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Abstract

We propose a bootstrap procedure for network data based on a nonparametric linking function esti-

mator. We characterise when the nonparametric linking function estimator is uniformly consistent.

We prove bootstrap consistency in the sense that a Wasserstein distance between the bootstrap

network generating distribution and the true network generating distribution goes to zero in proba-

bility. We provide conditions under which distributions of a class of functions related to U-statistics

on the bootstrapped networks consistently replicate the distributions of the corresponding statis-

tics on the original network. Monte Carlo simulations show good confidence interval coverage for a

wider class of network functions than are accounted for by our theory. An application to the data

from Banerjee, Chandrasekhar, Duflo, and Jackson (2013) not only replicates their findings, but

also shows that our method can be applied under weaker assumptions and smaller sample sizes. We

propose an alternative specification of their model which takes advantage of our linking function

estimator and may be of interest independently of our bootstrap procedure.



1 Introduction

Many papers in economics studying information diffusion (e.g. Banerjee, Chandrasekhar, Duflo, and

Jackson (2013), Alatas et al. (2016), Conley and Udry (2010)), spillover effects (e.g. Carter, Laajaj,

and Yang (2021)) and other network models run into the issue that it is very difficult to conduct

statistical inference on complex, interconnected data structures represented by networks. In this

paper, we propose a solution: a bootstrap procedure which does not impose strong assumptions

on the form of the network-generating function and can be applied to a wide range of network

statistics.

The default approach when analysing the behaviour of statistics is finding an asymptotic ap-

proximation to their distribution, a technique well-suited for simple models and data with limited

dependence. Unfortunately, the models we build on networks are often complex and the networks

themselves tend to exhibit a deeply interconnected structure. All individuals in a network are

closely related: the concept of “six degrees of separation” shows that nearly all users of social

media platforms like Facebook or Twitter are at most six connections away from each other, while

the average distance is below four. At the same time, the rate at which we learn about their con-

nections grows more slowly than the network size. This phenomenon is known as sparsity and can

be illustrated by the fact that, during their peak growth periods, social media platforms gained

new users at a faster rate than individual users gained new connections. Because of the issues of

strong connectedness, sparsity, and complicated functional forms of network statistics, asymptotic

theory for network statistics tends to be complicated, specialised to certain classes of estimators,

and, in many cases, still underdeveloped.

For similar reasons, standard bootstrap techniques are not valid for network data: we need a

specialised bootstrap procedure based on understanding and replicating the dependence structure

in a network. The few existing methods for bootstrapping network data suffer from either limited

applicability (they tend to focus on specific classes of network statistics and cannot be easily

extended to e.g. regressions controlling for the dependence structure defined by the network) or

restrictive parametric functional form for the components of the network-generating process. We

address both of those concerns.

Our bootstrap procedure takes a given network and generates new networks with similar struc-

ture. We provide guarantees that the bootstrapped networks are drawn from a distribution closely

resembling that of the original network, allowing them to be treated as independent samples from

the original network’s data-generating process. If we are interested in the distribution of a par-

ticular statistic of the original network, we can approximate resampling from this distribution by
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estimating the same statistic on the bootstrapped networks.

We assume a general form of a network-generating process in which the observed network

is determined by an unknown distribution over types of individuals and an unknown function

determining the the probability of a link between any pair of individuals. We assume that the

network we observe is formed from a group of people, each characterised by a set of (possibly

unobserved) features that are independent of the features of others. We assume that the observed

links were drawn independently with probabilities determined by a binary linking function which

takes the features of any two individuals as inputs and outputs the probability of a link between

them.

If we knew the linking function, we could generate networks similar to the observed one by

firstly resampling from the original set of individuals and then adding links based on probabili-

ties determined by the linking function. However, the linking function is unknown, and to make

matters worse, it depends on possibly unobserved inputs. To address this challenge, we propose a

nonparametric method to estimate the linking function which takes advantage of the information

provided by the set of observed connections.

We start by borrowing a distance from Auerbach (2022) (see also Zhang, Levina, and Zhu

(2017)), which can be intuitively summarised as: people with similar sets of friends are similar to

each other. If we observe two people with similar sets of neighbours, it likely happened because

the linking function gave similar probabilities for their links with other individuals. This way

we can identify people similar to any person i. We can then determine what proportion of these

‘counterfactuals’ of i are linked to a person j, providing an estimate of the link probability between

i and j. Similarly, by swapping the roles of i and j, we can find what proportion of individuals

similar to j are linked to i. Assuming that links are symmetric, we take the average of these two

estimates as an estimate of the link probability between i and j. Whenever we sample i and j as

nodes of the bootstrap network we draw a link between them with this estimated probability.

Having developed a method to generate bootstrap networks, we characterise the conditions

under which our procedure works well. This paper makes three main contributions. The first

contribution is to the literature on the linking function estimation: we propose a linking function

estimator and provide conditions under which it achieves uniform consistency. We also develop a

cross-validation procedure for choosing an optimal bandwidth parameter for our estimator. The

second contribution is to the network bootstrap literature: we develop a new bootstrap procedure

and provide conditions under which our bootstrap is consistent. We show this in two ways: we

borrow a notion of Wasserstein distance between network generating distributions from Levin and

Levina (2019) and we show that the distance between the bootstrap network generating process
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and the true network generating process goes to zero in probability as we increase the sample size.

Unfortunately, this is not sufficient to ensure that the distribution of any statistic on a bootstrap

network replicates the corresponding distribution of that statistic on the original network. We

show this directly for a class of statistics which are closely related to U-statistics. The motivation

for this is twofold: this is a wide class of functions and includes some estimators we may be

directly interested in, for example the density of connections within a network. Additionally, this

class includes motif densities, i.e. the densities of different patterns on subgraphs of the adjacency

matrix. These are sometimes referred to as “network moments” because they characterise the

network generating distribution: if two networks match on densities of all possible patterns, they

come from the same distribution. Hence proving that our bootstrap procedure correctly recovers

the distributions of all motif densities implicitly shows that the bootstrap networks share the same

asymptotic network generating distribution as the original network.

While we don’t currently have explicit asymptotic theory for more general network functions,

our simulations suggest that our method is more widely applicable. We also provide an illustration

on the data from Banerjee, Chandrasekhar, Duflo, and Jackson (2013), which allows us to replicate

their findings for estimates of a diffusion model over a network, provide estimates using a sub-

sample of the data too small for the original inference method to apply, and propose an alternative

model specification which relies on our linking function estimator and which could be of interest

independently of the bootstrap procedure.

In Section 2 we summarise the related literature. The setup of the model is described in Sec-

tion 3, where we also provide definitions of our estimators and the bootstrap procedure. Section 4

includes the statements of our main results: the uniform consistency of the linking function es-

timator in Theorem 1, a bootstrap consistency result for a specific class of estimators related to

U-statistics in Theorem 3, and a Wasserstein distance convergence in Theorem 2. Section 5 shows

results of Monte Carlo simulations and Section 6 describes an application to the data from Baner-

jee, Chandrasekhar, Duflo, and Jackson (2013). Section 7 concludes. The appendices start with

a list of all notation. Appendix A includes all proofs, Appendix B provides the codes, additional

tables, plots for simulations, Appendix C includes extensions.

2 Related literature

2.1 Network Bootstrap

There are a few existing bootstrap procedures for different functions on networks. Most of the

literature focuses on bootstrapping a class of network functions closely related to U-statistic, or
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their subset, motif densities. Our procedure can be applied to a much wider class of functions.

Green and Shalizi (2022) propose two types of bootstrap: the empirical bootstrap, in which

they resample individuals and put a link between them if they were linked in the original graph,

and a parametric histogram bootstrap. The empirical bootstrap can be seen as a special case of

ours, it is simple and computationally attractive, but it suffers from a few types of bias: whenever

an individual gets resampled more than once, these copies are not linked (as there were no self-links

in the original graph), and they share the same link patterns with all other individuals (there is

correlation between link formation in the bootstrap graph which was not present in the original

graph). Green and Shalizi (2022) prove that this dependence and bias is asymptotically negligible

for motif densities, but this is not necessarily true for other functions. Our simulations show that

their procedure does not perform well e.g. for eigenvalues other than the highest one.

Levin and Levina (2019) assume a specific functional form of the linking function1. They propose

two methods: one in which they directly estimate a U-statistic and one in which they generate a full

network that can be used for estimating more general functions of a network, including eigenvalues

and measures of small-world behaviour. This is the only paper we are aware of which provides results

for functions of the entire network: they show that the entire bootstrapped network converges to an

independent copy of the original network in terms of a new notion of Wasserstein network distance

they define. Under our more general nonparametric specification we are able to show convergence

in terms of the same distance (see Theorem 2).

Lin, Lunde, and Sarkar (2020) propose a computationally efficient multiplier bootstrap for

motif densities, based on approximating the first (for large sparse graphs) or first and second (for

smaller denser graphs) order terms of a Hoeffding decomposition of the U-statistic. Their method

is specific to this class and, unlike ours, it cannot be extended to other types of network functions.

They show higher-order accuracy of their quadratic bootstrap using an Edgeworth expansion. The

theory of Edgeworth expansion for motif densities is developed Zhang and Xia (2022) who show

higher order correctness of a studentised version of the empirical bootstrap of Green and Shalizi

(2022). We believe similar methods could be used to show higher-order accuracy of our method,

but we do not pursue this direction in the current work.

Shao and Le (2024) provide a parametric bootstrap in a setting different from all the previously

mentioned papers, where the nodes are non-exchangeable. In our notation this corresponds to a

situation in which the ξ and the matrix of link probabilities are fixed, h0,n takes a known parametric

form, and the randomness comes only from η. Their analysis focuses on quantifying the bias and

1. They assume a random dot product graph with a linking function: h0,n(ξi, ξj) = ξ′iξj where ξi is a vector of
latent positions which can be interpreted as characteristics of individual i.
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providing bias-corrected bootstrap procedure for motif densities.

The network setup is a special case of an exchangeable array2. Papers which propose boot-

strap for exchangeable arrays include Davezies, D’Haultfœuille, and Guyonvarch (2021), whose

method in our setting is identical to empirical bootstrap, and Menzel (2021), who proposes a new

wild bootstrap procedure based on splitting the statistic of interest into orthogonal components,

estimating them by sample analogues, and resampling each component with appropriate scaling.

Menzel (2021) also points out that, depending on the dependence structure, the limiting distribu-

tion may be nonstandard. Their LLN and CLT results apply to functions of finite k-dimensional

clusters which take a form of U- or V-statistics (including degenerate cases), their smooth function-

als and Z-estimators. Their methods are local, they can be applied to functions of finite subgraphs

and cannot account for dependence over the whole adjacency matrix, as in the case of eigenvalues

or some centrality measures covered by our method.

In terms of the allowed level of sparsity, we impose a stronger requirement for acyclic motifs

than both models in Green and Shalizi (2022) as well as Lin, Lunde, and Sarkar (2020), but our

requirement is the same as for cycles in Lin, Lunde, and Sarkar (2020) and is weaker than that

for general motifs for Green and Shalizi (2022) empirical graphon. In comparison with Green and

Shalizi (2022) histogram graphon, our sparsity condition for general motifs becomes weaker only

when m > 4, and we also impose weaker conditions than L-Lipschitz on the linking function. Levin

and Levina (2019) only include sparsity considerations in one result, for acyclic motifs and cycles.

Their assumption is weaker than ours, which is not surprising given their model is parametric.

In terms of alternative ways of estimating distributions of network statistics, Bickel, Chen,

and Levina (2011) provide asymptotic theory for motif densities. Subsampling methods have been

proposed by Bhattacharyya and Bickel (2015), who give results for motif densities, and Lunde

and Sarkar (2022), who provide consistency results for general functions and specify them to two

classes: motif densities and eigenvalues of graphons of finite rank. Their methods require minimal

assumptions and allow for sparser graphs than ours.

2.2 Linking function estimation

The first step in our bootstrap procedure involves the estimation of a linking function, for which we

propose a nonparametric estimator and provide conditions for its uniform consistency. Our idea for

the nonparametric linking function estimator was inspired by Auerbach (2022), who provides a way

2. Using notation from Davezies, D’Haultfœuille, and Guyonvarch (2021), our model is a special case of an
exchangeable and dissociated array with k = 2 and Uij corresponding to the randomness due to Bernoulli trials
τ(ui, uj , uij) = 1(h(ui, uj) ≤ uij). The kernels of U-statistics on networks can be represented as higher-dimensional
(2 ≤ k <∞) exchangeable arrays.
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of controlling for a network-dependent latent covariate in a partially linear regression setting. Our

estimator has been previously proposed, but not analysed by Zeleneev (2020). Our contribution

to the literature on linking function estimation most closely resembles Zhang, Levina, and Zhu

(2017), who propose a similar procedure to ours, with the difference that their distance is defined

in terms of the maximum norm and their estimator is a nearest-neighbour estimator instead of a

kernel estimator.

One key contribution we make is providing a numerical procedure for selecting an optimal value

for a tuning parameter. In Zhang, Levina, and Zhu (2017) the equivalent parameter is motivated

theoretically and derived from the rate of convergence. We find that our procedure with the nu-

merically chosen optimal parameter values outperforms Zhang, Levina, and Zhu (2017) with the

theoretically best optimal values when used as a first step in our bootstrap procedure. We believe

this is largely due to the bandwidth choice.

2.3 Other

In the proofs that our bootstrap procedure is reliable we use a framework inspired by Politis et

al. 1999. Our results can be seen as an extension of Bickel and Freedman (1981), the classic paper

providing conditions for consistency of bootstrap for U-statistics. We extend their analysis to the

case where the objective function becomes a U-statistic only after taking expectation conditional

on a vector of unobserved characteristics and after substituting the true linking function for its

estimator as the input to the kernel function. We show that our linking function estimator con-

verges to the true linking function in a sense which is sufficient for the bootstrap equivalent to

converge weakly in probability to the same limiting distribution as the object of interest in the

original sample. Because of the additional levels of approximation, we achieve a weaker notion of

convergence than convergence weakly almost surely in Bickel and Freedman (1981), but our result

is still sufficient to provide asymptotically correct bootstrap confidence intervals.

For our empirical application, we use the data and some of the codes from Banerjee, Chan-

drasekhar, Duflo, and Jackson (2013). We confirm their results using our method and we repeat

a part of their analysis under weaker assumptions: where the original paper performs the estima-

tion aggregating over many villages, we are able to provide estimates and confidence intervals on

individual village level. We are also able to run a related model based on the strength of connec-

tions between household rather than the less informative binary information on presence or lack of

connection. We find that removing this one level of approximation has a significant effect on our

conclusions.
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3 Model: setup, definitions and the bootstrap procedure

3.1 Setup

We follow the standard setup in the literature known as the latent space model.

We observe an adjacency matrix A which corresponds to an undirected, unweighted graph on

n nodes (also referred to as individuals) indexed by i ∈ {1, 2, . . . , n}. The matrix is symmetric, has

zeros on the main diagonal and ones in positions corresponding to edges in the graph (Aij = 1 if

and only if there is an edge between nodes i and j). For a vector of index numbers ι = (ι1, . . . , ιm)
′

with ιi ∈ {1, 2, . . . , n} we let A(ι) denote the corresponding submatrix defined on nodes in ι (i.e.

A from which we remove rows and columns not in ι). Each node i is characterised by a vector

of unobserved features3 ξi, drawn independently from their common distribution F0 with support

Supp(ξi). We denote the vector of all {ξi}ni=1 by ξ and we let ξ(ι) = (ξι1 , . . . , ξιm). We assume that

the distribution has no point mass, i.e. for ξi, ξj ∼ F0 we have PF0(ξi = ξj) = 04. We impose more

assumptions on F0 in Assumption 1.25.

Let h0,n : Supp(ξi)×Supp(ξi) −→ [0, 1] be a symmetric, measurable linking function6 which can

be decomposed as:

h0,n(u, v) = ρnw0(u, v) (1)

where
∫
w0(u, v)dF0(u)dF0(v) = 1.

For each pair of nodes i, j, h0,n(ξi, ξj) maps their unobserved characteristics ξi, ξj into the

probability of a link (edge) between them, i.e. the probability with which Aij = 1. For concise

notation, we use h0,n(ξ(ι)) to mean the collection of pairwise linking probabilities between the

elements of ξ(ι). We treat the linking function as unknown, making minimal assumptions on its

properties in Assumption 1.2: we require that for each input there is a neighbourhood of sufficiently

large measure in which the behaviour of the function remains similar. Importantly, we do not require

a specific form (e.g. random dot product structure: h0,n(ξi, ξj) = ξ′iξj like in Levin and Levina

(2019)), we do not impose any shape constraints (e.g. that the function is strictly increasing in its

inputs).

The decomposition into ρn and w0 is without loss of generality and can be seen as a normalisa-

3. This corresponds to the vector of latent positions Xi in Levin and Levina (2019).
4. This is without loss of generality: if we had a distribution with a point mass we could define a new support of

ξ and a new F0 in which the point mass would be replaced by a region of ξ of total measure equal to the probability
at the original point.

5. The assumptions are implicit and would be implied by F0 bounded above and separated away from zero with
h0,n piecewise Lipschitz.

6. The linking function has been referred to as the coupling function g(., .) in Zeleneev (2020) and the graphon
function in Green and Shalizi (2022).
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tion which allows us to interpret ρn as the expected edge density (the marginal probability of an

edge between two nodes). We assume ρn −→ 0 as n −→ ∞, which captures the common feature of

real economic networks known as sparsity. Intuitively, it says that the number of expected friends

grows at a slower rate than the size of the network: no matter how large the potential pool of friends

is, people tend to have a fairly small friendship group. This causes issues for estimation because,

even as the size of the network grows at a rate n, the amount of information about the links of a

specific node i grows at a slower rate of ρnn. In the extreme case of ρnn being bounded we can’t

hope to get consistency of our estimates. In our results we specify bounds on the rate at which ρn

approaches zero which still allow us to reliably estimate parameters and their distributions. For the

linking function estimator we require that the density decreases at a slower rate than
√

log(n)
n (see

Assumption 1.1), while in other sections we may strengthen this requirement, e.g. in Theorem 3

the allowed level of sparsity depends on how complicated the statistic we are estimating is.

w0 is the underlying linking/graphon function after accounting for sparsity. While w0 cannot

be interpreted directly as a probability, it has similar properties, e.g. it is bounded7This is the

function which determines the data generating process and the function the statistics of which we

want to analyse. Although in a sample of size n we encounter its rescaled version h0,n, for any

asymptotic results we need to remove the effect of sparsity and we look at normalisations which

are function of
h0,n

ρn
.

To capture the way in which the linking function h0,n is translated into the observed links in

A we introduce a random noise parameter: for 1 ≤ i ≤ j ≤ n let ηij
ind∼ U[0, 1] be independent of

ξ. We denote the vector of ηij by η. We assume8:

Aij = Aji = 1 (h0,n(ξi, ξj) ≥ ηij) (2)

Aii = 0. (3)

Note that E(Aij |ξi, ξj) = P (Aij = 1|ξi, ξj) = h0,n(ξi, ξj) = ρnw0(ξi, ξj). To distinguish between

adjacency matrices based on the true and estimated/simulated inputs we sometimes explicitly

write A as a function: A(h0,n(ξ), η).

7. This is a common assumption in the literature, though it is sometimes relaxed to allow w0(u, v) ∈ R+ and let
h0,n(u, v) = min{w0(u, v), 1}. This affects the interpretation of ρn as the density and makes it more difficult to infer
h0,m from h0,n. Our results could be generalised to allow for unbounded w0 at the expense of more complicated
proofs and additional assumptions on bounded moments of w0 or its functions.

8. This is one specific way of achieving:

Aij |ξ = Aji|ξ
ind∼ Bernoulli (h0,n(ξi, ξj))

Aii = 0
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3.2 The object of interest

Suppose we are interested in fn(A(h0,n(ξ), η), ρn, F0), or fn(A) in short, which is a function of

the observed adjacency matrix A based on Bernoulli trials with probabilities determined by a

linking function h0,n of i.i.d observations ξ from the distribution F0, on the sparsity ρn, and on

the distribution F0 itself. More precisely, let the distribution of the statistic of interest be:

Jn (t, h0,n, F0) = P (fn (A (h0,n (ξ) , η) , ρn, F0) ≤ t) . (4)

Example. To fix ideas, suppose we are interested in the density ρn = E(Aij). We may want to

test if it takes a specific value predicted by our theory, or we may wish to test if two networks (or

perhaps the same network at two points in time) have the same density level. We can estimate the

density using the density estimator from the observed adjacency matrix A:

ρ̂n =
1(
n
2

) ∑
1≤i<j≤n

Aij . (5)

We could use fn(A) = ρ̂n directly, or we could recentre and normalise the above expression:

fρnn (A(h0,n(ξ), η), ρn, F0) =

√
n(

n
2

)
ρn

∑
1≤i<j≤n

Aij − EF0
(h0,n(ξi, ξj)) (6)

to get a statistic which has a well-defined asymptotic distribution. The results in Theorem 3 imply

that ρ̂n is consistent for ρn and fρnn (A(h0,n(ξ), η), ρn, F0) is asymptotically normal. The finite-

sample distribution is non-trivial and depends on F0.

Our goal is to find a good approximation to this finite-sample distribution, e.g. in order to form

confidence intervals for fn(A). We do it by defining estimators ĥn of the linking function h0,n; F̂n of

the distribution of ξ; and ρ̂n of the density parameter. We use these estimates to form B bootstrap

adjacency matrices A
(
ĥn (ξ∗b ) , η∗b

)
, where the bth bootstrap adjacency matrix is evaluated using

ĥn based on ξ∗b from F̂n.

We evaluate fn

(
A
(
ĥn (ξ∗) , η∗

)
, ρ̂n, F̂n

)
for B bootstrap samples to get the simulated distri-

bution:

Ĵn,B

(
t, ĥn, F̂n

)
=

1

B

B∑
b=1

1
(
fn

(
A
(
ĥn (ξ∗b ) , η∗b

)
, ρ̂n, F̂n

)
≤ t
)
. (7)

For B large enough this provides an arbitrarily good approximation to Jn

(
t, ĥn, F̂n

)
9 and can be

9.

PF0

(
sup
t

∣∣∣Ĵn,B(t, ĥn, F̂n)− Jn
(
t, ĥn, F̂n

)∣∣∣ > ε

)
≤ 4
√

2e−2Bε2 ,
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used to approximate Jn (t, h0,n, F0).

In the reminder of this section we define all the estimators and the bootstrap procedure.

3.3 Distance: definition and estimator

Based on the observed matrix A, we want to estimate the linking probability for any pair of

nodes. We start by defining a distance between individuals i and j, taking the measure from

Auerbach (2022)10. Intuitively, if two people have similar friendship groups, they should be similar

to each other: they likely ended up with similar friendship groups because their linking functions

were similar. We let ϕ(ξi, ξt) = E (w0 (ξi, ξs)w0 (ξt, ξs)| ξi, ξt) = E
(
Ais
ρn

Ats
ρn

∣∣∣ ξi, ξt) be a function

measuring the probability of a common friend between i and t, normalised to remove the effect

of sparsity. Similarly, ϕ(ξj , ξt) gives a normalised measure of the probability of common friends

between j and t. To measure the similarity in friendship groups between i and j we look at the

expected difference ϕ(ξi, ξt)−ϕ(ξj , ξt) for any individual t. This motivates the definition of distance

between i and j:

dij =

√
E
(

(ϕ(ξi, ξt)− ϕ(ξj , ξt))
2
∣∣∣ ξi, ξj) (8)

=

√
E
(

(E (w0 (ξt, ξs) (w0 (ξi, ξs)− w0 (ξj , ξs))| ξi, ξj , ξt))2
∣∣∣ ξi, ξj) (9)

=

√√√√E

(
E

(
Ats
ρn

(
Ais
ρn
− Ajs

ρn

)∣∣∣∣ ξi, ξj , ξt)2
∣∣∣∣∣ ξi, ξj

)
. (10)

After an appropriate normalisation by the sparsity level ρn, we get an expression in terms of the

linking function h0,n = ρnw0 at sample size n:

ρ2
ndij =

√
E
(

(E (h0,n (ξt, ξs) (h0,n (ξi, ξs)− h0,n (ξj , ξs))| ξi, ξj , ξt))2
∣∣∣ ξi, ξj) (11)

=

√
E
(
E (Ats (Ais −Ajs)| ξi, ξj , ξt)2

∣∣∣ ξi, ξj). (12)

Eq. (11) highlights the close relation between the normalised distance and the similarity between

the linking functions of i and j at sample size n: a low value of ρ2
ndij means i and j are similar to

each other in the sense that their h0,n(ξi, ·) and h0,n(ξj , ·) are close. We exploit this when defining

an estimator for h0,n. The normalised expression is also attractive because the sample equivalent

see references on p.5 of Politis et al. (1999) for more details.
10. Auerbach (2022) refers to ϕξi (τ) = ϕ(ξi, τ) as the codegree function of agent i. In his model there is no

sparsity: ρn = 1, which is why he does not need the normalisation by 1
ρn

.
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of its representation in Eq. (12) provides us with an estimate of ρ2
ndij :

ρ2
nd̂ij =

√√√√ 1

n

n∑
t=1

(
1

n

n∑
s=1

Ats (Ais −Ajs)

)2

. (13)

Remark. If we needed to estimate d̂ij without the normalisation we could substitute the estimated

density ρ̂n (Eq. (5)) for the unknown ρn. However, in practice the way we use the distance is with

a normalisation by a bandwidth parameter an (chosen by the researcher), we look at functions of:

ρ4nd̂
2
ij

an
≡ d̂2ij

bn
, and we can think of the ρn as being absorbed into the renormalised bandwidth bn.

Remark. We could also consider estimators of related distances from Zeleneev (2020), who took

it from Zhang, Levina, and Zhu (2017): ρ2
nd̂

(∞)
ij =

(
maxt6=i,j

∣∣∣ 1
n

∑
s6=i,j,tAts(Ais −Ajs)

∣∣∣) 1
2

and

from Lovász (2012) (section 13.4): ρ2
nd̂

(1)
ij =

(
1
n

∑n
t=1

∣∣∣ 1
n

∑
s 6=i,j,tAts(Ais −Ajs)

∣∣∣) 1
2

. All of these

distances are based on the same idea but average ϕ(ξi, ξt)−ϕ(ξj , ξt) using L2, L∞ and L1 distances,

respectively.

3.4 Linking function estimator

We are now ready to define an estimator ĥn for the linking function h0,n. We rely on a kernel

approximation: let K(·) be a kernel function (for properties see Assumption 1.3), let an be a

bandwidth parameter (for its rates of convergence see Assumption 1.4, see Section 3.5 for a method

of choosing an optimal bandwidth). We can estimate ĥn(ξi, ξj) as:

ĥn(ξi, ξj) =
h̃n(ξi, ξj) + h̃n(ξj , ξi)

2
(14)

where

h̃n(ξi, ξj) =

∑n
t=1
t 6=j

K
(
ρ4nd̂

2
it

an

)
Atj∑n

t=1
t 6=j

K
(
ρ4nd̂

2
it

an

) . (15)

h̃n(ξi, ξj) is a local weighted average which puts the highest weights on the individuals most

similar to i. The bandwidth controls the required level of similarity beyond which we use zero

weights. Each person t with d̂it sufficiently close to zero can be seen as a counterfactual to i,

someone with a very similar linking function (i.e. a small h0,n(ξi, ·) − h0,n(ξt, ·)). The proportion

of people similar to i who are linked to j gives an estimate of the link probability between i and

j. The observation with t = j is excluded because we assume there are no self-link: Ajj = 0 is not

11



defined in terms of h0,n. Adding a non-zero weight on this observation would introduce bias.

To get ĥn(ξi, ξj) we take advantage of the symmetry of links, we repeat the estimation swapping

the roles of i and j and take an average of the two estimates.

We show that this estimator is uniformly consistent for h0,n in Theorem 1.

Remark. This estimator has been proposed, but not analysed by Zeleneev (2020). We could also

use a related estimator:

ĥ(K2)
n (ξi, ξj) =

∑n
t=1

∑n
s=1

t 6=s
K
(
ρ4nd̂

2
it

an

)
K

(
ρ4nd̂

2
js

an

)
Ats

∑n
t=1

∑n
s=1

t 6=s
K
(
ρ4nd̂

2
it

an

)
K

(
ρ4nd̂

2
js

an

) .

Or one by Zhang, Levina, and Zhu (2017), which uses the nearest-neighbour idea:

ĥ(NN1)
n (ξi, ξj) =

h̃
(NN1)
n (ξi, ξj) + h̃

(NN1)
n (ξj , ξi)

2
where h̃(NN1)

n (ξi, ξj) =

∑
t∈Ni Atj

‖Ni‖

where Ni denotes the set of neighbours of i. They show that the optimal size of the neighbourhood,

‖Ni‖, should grow at the rate of (n ln(n))1/2. Or, we could use a nearest-neighbour approach in

both inputs simultaneously (again, mentioned, and this time analysed, by Zeleneev (2020)):

ĥ(NN2)
n (ξi, ξj) =

∑
t∈Ni

∑
s∈Nj Ats

‖Ni‖‖Nj‖
.

In simulations all of these estimators perform similarly.

3.5 Optimal bandwidth

The linking function estimator relies on a bandwidth parameter chosen by the researcher. We

propose a cross-validation procedure which allows choosing the bandwidth in an optimal way.

The idea is to choose a bandwidth for which ĥn best explains the observed network A, if we

leave out Aij when estimating Aij . The reason for leaving out Aij is that if we don’t, we are trying

to estimate Aij using a set of observations which include Aij , hence we can estimate it perfectly.

We just need to choose an = ∞, this puts weight one on Aij and zero on all other observations,

leading to a perfect prediction of A but a poor choice of bandwidth. This issue of overfitting can

be avoided by removing the observation Aij from the model predicting Aij .

12



We firstly define a leave-one-out version of ĥn:

h̃−n (ξi, ξj) =

∑n
t=1

t 6=i,j
K
(
ρ4nd̂

2
it

an

)
Atj∑n

t=1
t 6=i,j

K
(
ρ4nd̂

2
it

an

)
ĥ−n (ξi, ξj) =

h̃−n (ξi, ξj) + h̃−n (ξj , ξi)

2
.

and then use it to obtain an estimate for the log-likelihood:

`(A, an) =

n∑
i=1

n∑
j=1

Aij log
(
ĥ−n (ξi, ξj)

)
+ (1−Aij) log

(
1− ĥ−n (ξi, ξj)

)
. (16)

We choose an which maximises the above expression to be our optimal bandwidth:

a(opt) = max
an

`(A, an). (17)

3.6 Empirical distribution function estimator

The formation of matrix A is determined by an initial sample of ξ from F0 and a linking probability

between any pair of elements from ξ. We have defined a way to estimate the linking probabilities,

but we still need a way to recreate the formation of ξ. This follows a very standard procedure, with

one twist. Since the elements of ξ are i.i.d. from F0, we should be able to use a standard boot-

strap (resample from the values from the original sample, with replacement) to create a bootstrap

equivalent. The non-standard part is that ξi are unobserved. We get around it by resampling not

directly from the set of ξi, but from the set of original nodes: we let each bootstrap node correspond

to one of the original nodes and we assign the set of characteristics of a bootstrap node (ξ∗i ) to be

equal to the set of characteristics of the resampled original node. The resulting distribution is an

empirical distribution function F̂n defined as the CDF which corresponds to the probability mass

function11:

P (ξ∗i = x) =


1
n if x ∈ {ξ1, . . . , ξn}

0 otherwise.

(18)

11. We would like to use the standard definition of an empirical distribution function:

F̂n(x) =
1

n

n∑
i=1

1 (ξi < x)

but unfortunately ξi are not observed, and may in general not be scalar, hence this notation doesn’t apply.

13



Each bootstrap node corresponds to one of the original nodes and inherits its characteristics. The

result is the same as if we formed the set of bootstrap characteristics ξ∗ by resampling from the

original set of characteristics ξ, with replacement.

3.7 Nonparametric network bootstrap procedure

We now describe the bootstrap procedure for fn(A(h0,n(ξ), η), ρn, F0). Just for this section, we

introduce simplified notation for the matrix of estimated distances (D) and the matrix of estimated

linking probabilities (H).

1. Calculate the distance between each pair of nodes i, j ∈ {1, 2, . . . , n}:

Dij =
1

n

n∑
t=1

(
1

n

n∑
s=1

Ats (Ais −Ajs)

)2

.

2. Calculate the optimal bandwidth parameter a(opt) as described in Eq. (17).

3. Calculate the probability of a link between each pair of nodes i, j ∈ {1, 2, . . . , n}:

ĥn(ξi, ξj) =
1

2


∑n
t=1
t 6=j

K
(
Dit
a(opt)

)
Atj∑n

t=1
t6=j

K
(
Dit
a(opt)

) +

∑n
t=1
t 6=i

K
(

Djt
a(opt)

)
Ati∑n

t=1
t 6=i

K
(

Djt
a(opt)

)


4. Calculate the density estimate of the original graph: ρ̂n as described in Eq. (5).

5. For each b = 1, . . . , B:

(a) draw an i.i.d. sample {ξ∗b,i}ni=1 of size n from F̂n, i.e. resample from the original set

of nodes {1, 2, . . . , n} with equal probabilities and with replacement, then assign the

unobserved characteristics of the bootstrap node to be the same as the unobserved

characteristics of its corresponding original node. Let ξ∗b =
(
ξ∗b,1, . . . , ξ

∗
b,n

)′
.

(b) draw η∗b,ij
ind∼ U[0, 1] for 1 ≤ i ≤ j ≤ n.

(c) form the bootstrap adjacency matrix A∗b :

A∗b,ij = A∗b,ji = 1
(
ĥn(ξ∗b,i, ξ

∗
b,j) ≥ η∗b,ij

)
(19)

A∗b,ii = 0. (20)

(e.g. if ξ∗b,i = ξt, ξ
∗
b,j = ξs then ĥn(ξ∗b,i, ξ

∗
b,j) = ĥn(ξt, ξs)).
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(d) calculate the object of interest on the bootstrap adjacency matrix:

fn(A∗b) ≡ fn
(
A
(
ĥn(ξ∗b ), η∗b

)
, ρ̂n, F̂n

)
. (21)

6. Form a (1−α)% confidence interval for fn(A(h0,n(ξ), η), ρn, F0) by taking the interval between

α
2 and 1− α

2 quantiles of {fn (A∗b)}
B
b=1.

For a description of how we used this procedure in simulations see Section 5. For the codes

used in simulation see Appendix B.1.

3.8 Appropriate notions of convergence

The aim of the remainder of this section is to introduce definitions used in the proofs that the

bootstrap procedure works, in the sense that the asymptotic distribution of the bootstrap statistic

is the same as the asymptotic distribution of the original statistic and, as a result, the bootstrap

confidence intervals asymptotically achieve correct coverage.

We choose fn that has a distribution limit (usually a normal random variable), i.e. we assume

Jn(t, h0,n, F0)⇒ J(t, w0, F0) for some non-degenerate distribution J(t, w0, F0), where “⇒” denotes

weak convergence. One convenient way to characterise weak convergence is though the following

distance between measures: let P and Q be probability measures on a common metric space S

equipped with a distance dS and let

f(S) =

{
f : S −→ R : |f(x)− f(y)| ≤ dS(x, y), sup

x∈S
|f(x)| ≤ 1

}

be the set of (Lipschitz) continuous and bounded real-valued functions on S, then:

dW (P,Q) ≡ sup
f∈f(S)

∣∣∣∣∫ f(x)dP (x)−
∫
f(x)dQ(x)

∣∣∣∣ .
It can be shown12 that Pn ⇒ P if and only if dW (Pn, P ) −→ 0 as n −→∞.

In order to prove consistency of the bootstrap procedure we would like to show that the distri-

bution Jn

(
t, ĥn, F̂n

)
, the bootstrap equivalent of Jn(t, h0,n, F0), achieves the same asymptotic dis-

tribution J(t, w0, F0). Unfortunately, the concept of weak convergence cannot be applied directly to

the bootstrap statistic because both the bootstrap distribution F̂n and the estimator ĥn are random

functions depending on the realisation of ξ, hence Jn

(
t, ĥn, F̂n

)
and d

(
Jn(t, ĥn, F̂n), J(t, w0, F0)

)
are also random. To proceed, we define two new concepts which generalise weak convergence to

12. See e.g. Proposition (M) in Chapter I of Hahn (1993)
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account for this randomness:

Definition 1. We say that Pn converges weakly to P almost surely, denoted by Pn
a.s.⇒ P , if

dW (Pn, P )
a.s.−−→ 0. For Xn ∼ Pn, X ∼ P we write Xn

d−→ X almost surely.

Analogously,

Definition 2. we say that Pn converges weakly to P in probability, denoted by Pn
p⇒ P , if

dW (Pn, P )
p−→ 0. For Xn ∼ Pn, X ∼ P we write Xn

d−→ X in probability.

Although this is a weaker requirement than regular convergence in distribution, Gine and Zinn

(1990), who introduced the concept of weak convergence in probability, show that this notion is

sufficient for the construction of asymptotically correct confidence intervals.

3.9 Distributions of intermediate terms

Since the elements of A exhibit dependence (e.g. Aij and Ajk both depend on ξj), it is relatively

difficult to work with fn(A(h0,n(ξ), η), ρn, F0) directly. We can instead consider its expectation

taken with respect to the Bernoulli trials with probabilities determined by h0,n(ξ):

f̃n (h0,n (ξ) , ρn, F0) ≡ Eh0,n
(fn(A(h0,n(ξ), η), ρn, F0)|ξ) (22)

where we have taken the expectation over η and the remaining object becomes a function of the

i.i.d. ξi.

Let J̃n denote the distribution of f̃n:

J̃n(t, h0,n, F0) = PF0

(
f̃n(h0,n(ξ), ρn, F0) ≤ t

)
. (23)

The limit of J̃n is easier to find than that of Jn, and the limits coincide if we can show that

fn − f̃n is negligible.

Remark. We often work with conditional expectations and switch between variables that fol-

low different distributions (e.g. the true distribution F0 and the estimated empirical distribu-

tion F̂n). When we think it is beneficial to clarify, we add subscripts to the expectation oper-

ator indicating with respect to which distribution we are taking the expectation. For example,

Eh0,n
(fn(A(h0,n(ξ), η), ρn, F0)|ξ) =

∫
fn(A(h0,n(ξ), η), ρn, F0)dη indicates that we are taking ex-

pectation with respect to the independent Bernoulli trials with probabilities determined by h0,n

while Eh0,n,F0(fn(A(h0,n(ξ), η), ρn, F0)) denotes the expectation with respect to both the Bernoulli

trials and the true distribution of ξ. The latter can also be written as EF0

(
f̃n(h0,n(ξ), ρn, F0)

)
,
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where f̃n(h0,n(ξ), ρn, F0) has already been integrated over the Bernoulli trials, hence its randomness

only comes from F0, the true distribution of ξ.

To illustrate the need for these intermediate terms we introduce an important class of statistics

for which f̃n take the form of a U-statistic.

Definition 3. Let ι be a set of m unique nodes, ξ be an n-dimensional vector of i.i.d. draws from

a distribution F and η an n-dimensional vector of independent draws from U[0, 1], and ρ ∈ [0, 1] be

the sparsity level. Denote the adjacency matrix on the subgraph with nodes in ι by A(h(ξ(ι)), η(ι)).

Let g(A(ι)) : {0, 1}(
m
2 ) −→ R be a non-degenerate symmetric function from a subgraph on m <∞

nodes to the real line such that Eh0,n,F0(g(A(ι))) = θ, where θ is a parameter of interest. We can

estimate θ on the whole network A by

θ̂ =
1(
n
m

) ∑
1≤ι1<ι2<···<ιm≤n

g(A(ι)). (24)

To get the corresponding fn(A(h(ξ), η), ρ, F ) with a well-defined distribution we recentre and nor-

malise the above expression:

fUn (A(h(ξ), η), ρ, F ) =

√
n(

n
m

)
ρτ(g)

∑
1≤ι1<ι2<···<ιm≤n

(g(A(h(ξ(ι)), η(ι)))− Eh,F (g(A(h(ξ(ι)), η(ι)))))

(25)

and

f̃Un (h(ξ), ρ, F ) =

√
n(

n
m

)
ρτ(g)

∑
1≤ι1<ι2<···<ιm≤n

(g̃(h(ι))− EF (g̃(h(ι)))) (26)

where g̃(h(ξ(ι))) ≡ Eh(g(A(h(ξ(ι)), η(ι)))|ξ(ι)) and we choose τ(g) to get a normalisation for which

there exists a non-degenerate bounded function ˜̃g such that

g̃(h0,n(ι))

ρ
τ(g)
n

= ˜̃g(w0(ι)) +O (ρn) .

The choice of τ(g) is quite simple: it is the smallest number of ones such that g(·) evaluated at

a vector of τ(g) ones and
(
m
2

)
− τ(g) zeros is non-zero. More importantly, the normalisation is not

important for practical applications. We introduce it in the definition because it is necessary to

get a well-defined asymptotic distribution (see Theorem 3, without the normalisation the limiting

value of the θ̂ would be 0), but we do not need it if our interest is in constructing a confidence

interval for θ. To see this, suppose θ and θ̂ are as above and let the bootstrap equivalent of the

estimator be θ̂∗b = 1

(nm)

∑
1≤ι1<···<ιm≤n g(A∗b(ι)). We can calculate the estimator for B bootstrap

adjacency matrices and find a confidence interval for θ as
[
θ̂∗L, θ̂

∗
U

]
where θ̂∗L = qα

2

({
θ̂∗b

}B
b=1

)
and
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θ̂∗U = q1−α2

({
θ̂∗b

}B
b=1

)
. This way we get:

1− α ' P
(
θ̂∗L < θ < θ̂∗U

)
= P

( √
n

ρ̂
τ(g)
n

(
θ̂ − θ̂∗U

)
<

√
n

ρ̂
τ(g)
n

(
θ̂ − θ

)
<

√
n

ρ̂
τ(g)
n

(
θ̂ − θ̂∗L

))

' P

( √
n

ρ̂
∗τ(g)
n

(
θ̂ − θ̂∗U

)
<

√
n

ρ̂
τ(g)
n

(
θ̂ − θ

)
<

√
n

ρ̂
∗τ(g)
n

(
θ̂ − θ̂∗L

))
.

The above confidence interval for θ is equivalent to a confidence interval for
√
n

ρ̂
τ(g)
n

(
θ̂ − θ

)
of the form[ √

n

ρ̂
τ(g)
n

(
θ̂ − θ̂∗U

)
,
√
n

ρ̂
τ(g)
n

(
θ̂ − θ̂∗L

)]
and is closely approximated by

[ √
n

ρ̂
∗τ(g)
n

(
θ̂ − θ̂∗U

)
,
√
n

ρ̂
∗τ(g)
n

(
θ̂ − θ̂∗L

)]
(we could also use the quantiles of fUn

(
A
(
ĥn (ξ∗) , η∗

)
, ρ̂n, F̂n

)
or fUn

(
A
(
ĥn (ξ∗) , η∗

)
, ρ̂∗n, F̂n

)
directly). The consistency of ρ̂n and ρ̂∗n for ρn follows from the proof of Theorem A.2.

Example. We now show the relation between fn and f̃n on an example. Suppose m = 3, e.g.

ι = (1, 2, 3), and the function g only depends on two entries in A13: g(A(ι)) = g(A1,2, A2,3).

Conditional on ξ, the Bernoulli trials that determine the entries of A are independent. Hence,

for example, P (Aij = 1, Ajk = 1|ξ) = P (Aij = 1|ξ)P (Ajk = 1|ξ) = h0,n(ξi, ξj)h0,n(ξj , ξk). It

follows that

g(A1,2, A2,3)|ξ =



g(0, 0) with probability (1− h0,n(ξ1, ξ2))(1− h0,n(ξ2, ξ3))

g(0, 1) with probability (1− h0,n(ξ1, ξ2))h0,n(ξ2, ξ3)

g(1, 0) with probability h0,n(ξ1, ξ2)(1− h0,n(ξ2, ξ3))

g(1, 1) with probability h0,n(ξ1, ξ2)h0,n(ξ2, ξ3).

The conditional expectation is a function of h0,n(ξ(ι)):

E(g(A1,2, A2,3)|ξ) ≡ g̃(h0,n(ξ1, ξ2), h0,n(ξ2, ξ3))

= g(0, 0)(1− h0,n(ξ1, ξ2))(1− h0,n(ξ2, ξ3)) + g(0, 1)(1− h0,n(ξ1, ξ2))h0,n(ξ2, ξ3)

+ g(1, 0)h0,n(ξ1, ξ2)(1− h0,n(ξ2, ξ3)) + g(1, 1)h0,n(ξ1, ξ2)h0,n(ξ2, ξ3).

If g(0, 0) 6= 0, the first term on the right is O(1) and dominates over the next terms. In this case we

choose τ(g) = 0. If g(0, 0) = 0 but g(0, 1) 6= 0 or g(1, 0) 6= 0, the dominating term is proportional

13. For simplicity in this example we used a function which is not necessarily symmetric. Before plugging it into
Eq. (25) we should symmetrise it in the following way:

ḡ(A(ι)) =
g(A1,2, A2,3) + g(A1,2, A1,3) + g(A1,3, A2,3) + g(A2,3, A1,2) + g(A1,3, A1,2) + g(A2,3, A1,3)

6
.
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to (1− h0,n(ξi, ξj))h0,n(ξj , ξk) = (1− ρnw0(ξi, ξj))ρnw0(ξj , ξk) = O(ρn), hence we choose τ(g) = 1

to normalise it. If g(0, 0) = g(0, 1) = g(1, 0) = 0 but g(1, 1) 6= 0, the dominating term is propor-

tional to h0,n(ξi, ξj)h0,n(ξj , ξk) = ρ2
nw0(ξi, ξj)w0(ξj , ξk) = O(ρ2

n), hence the correct normalisation

is τ(g) = 2. When ρn −→ 0, only the dominating term influences the limiting behaviour. We call

this dominating term ˜̃g. In this example:

˜̃g(h0,n(ξ1, ξ2), h0,n(ξ2, ξ3)) =

=


g(0, 0) if g(0, 0) 6= 0

g(0, 1)h0,n(ξ2, ξ3) + g(1, 0)h0,n(ξ1, ξ2) if g(0, 0) = 0, g(0, 1) 6= 0, g(1, 0) 6= 0

g(1, 1)h0,n(ξ1, ξ2)h0,n(ξ2, ξ3) if g(0, 0) = g(0, 1) = g(1, 0) = 0, g(1, 1) 6= 0.

In all cases we have:

g̃(h0,n(ξ1, ξ2), h0,n(ξ2, ξ3))

ρ
τ(g)
n

= ˜̃g(w0(ξ1, ξ2), w0(ξ2, ξ3)) +O (ρn)

where the first term is O(1) and does not depend on the sample size n.

We will later do Taylor expansion of g̃, for which it is interesting to note that regardless of

whether g is a nice function (continuous, differentiable, etc) of A, g̃ is (infinitely many times)

continuously differentiable in h0,n and has bounded derivatives. Taking a derivative of g̃ with respect

to h0,n lowers the power on the h0,n terms by one, hence if g̃ ∼ ρ
τ(g)
n then g̃

′ ∼ ρ
τ(g)−1
n and

g̃
′

ρ
τ(g)
n

= 1
ρn

.

Then

f̃n(h0,n(ξ), ρn, F0) =

√
n(

n
m

)
ρ
τ(g)
n

∑
1≤ι1<ι2<···<ιm≤n

(¯̃g(h0,n(ι))− EF0
(¯̃g(h0,n(ι)))) . (27)

We can think of the above as a function of the i.i.d. ξ. If g is symmetric, so is g̃(h0,n(·)), and

the f̃n(h0,n(ξ), ρn, F0) takes the form of a (normalised) U-statistic, for which we have results such

as LLN and CLT. Hence it’s much easier to work with than the original fn(A(h0,n(ξ), η), ρn, F0)

(which was not a U-statistic due to the dependence in A).

Remark. It is usually not the case that f̃n has the same form as fn with Aij replaced with

h0,n(ξi, ξj), but it can happen in some special cases. One such example are motif densities, for

which the g function is a product of terms of the form Aij (if the motif has an edge between nodes

i and j) and (1−Aij) (if the edge is supposed to be missing). For example, if the motif of interest

is a triangle, we have g(Aij , Ajk, Aki) = AijAjkAki. This is 1 if all inputs are equal to 1 and 0 in
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all other cases, hence g̃(h0,n(ξi, ξj), h0,n(ξj , ξk), h0,n(ξk, ξi)) = h0,n(ξi, ξj)h0,n(ξj , ξk)h0,n(ξk, ξi).

Remark. Because in the proof of Theorem 3 we rely on a CLT for U-statistics applied to f̃n

instead of fn, the normalisation by 1

ρ
τ(g)
n

is chosen to balance the rate of growth of the variance of

g̃ rather than g. Take a simple example of g(Aij) = Aij. Then τ(g) = 1 and:

E

(g(Aij)

ρ
τ(g)
n

)2
 =

E (h0,n(ξi, ξj))

ρ
2τ(g)
n

=
1

ρ
τ(g)
n

−→∞

E

(E (g(Aij)| ξ)
ρ
τ(g)
n

)2
 =

(E (h0,n(ξi, ξj)))
2

ρ
2τ(g)
n

= O(1).

4 Main results

In this section we state our main results which characterise the conditions under which the linking

function estimator and our entire bootstrap procedure are consistent.

4.1 Consistency of the linking function estimator

We start by showing the uniform consistency of the linking function estimator.

Assumption 1 (The Assumptions for Uniform Consistency of the Linking Function Estimator).

We make the following assumptions:

1.1 1
ρn

= o

(√
n

log(n)

)
.

1.2 Let N(ξj , δ) =
{
ξk : supξt |w0(ξt, ξk)− w0(ξt, ξj)| < δ

}
denote the neighbourhood of ξj of size

δ and let ω(δ) = infξj∈Supp(ξj) P (ξk ∈ N(ξj , δ)| ξj). There exist some α,C > 0 such that

ω(δ) ≥
(
δ
C

) 1
α for all δ > 0.

1.3 K(·) is a kernel function which is

• a continuous bounded probability density function (non-negative: K(u) ≥ 0, integrates

to 1:
∫
K(u)du = 1),

• non-zero on a bounded support: there exists a D ∈ R such that ∀|u| > D : K(u) = 0,

• positive close to 0: there exist positive constants C1, C2 such that K(u) ≥ C1 whenever

|u| ≤ C2,

• Lipschitz continuous: there exists C > 0 such that |K(u)−K(v)| ≤ C|u− v|.

1.4 The bandwidth can be written as an = ρ4
nbn for some bn = o (1) and 1

bn
= o

((
nρ2n

log(n)

) α
1+2α

)
.
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We now discuss the assumption and give some intuition.

Assumption 1.1 is our sparsity assumption. It gives a lower bound on how sparse a model can

be for our estimator to remain consistent. Intuitively, the only informative observations are the

links, and their number grows at a slower rate than the sample size: we expect on average nρn

links in a sample of n individuals. Our model works well if the number of links increases at a rate

faster than
√
n log(n). This is analogous to the assumption in Zhang, Levina, and Zhu (2017), with

the exception that they model the increasing difficulty in estimation with n by allowing δ(n) −→ 0

instead of having a sparsity parameter ρn −→ 0.

Assumption 1.2 ensures that the neighbourhoods for all observations are sufficiently large. We

can think of it as a “continuity” condition for w0, analogous to that assumed by Auerbach (2022):

for all δ > 0:

inf
ξj∈Supp(ξj)

Pξk∼F0

(
sup
ξt

|w0 (ξt, ξk)− w0 (ξt, ξj)| < δ

∣∣∣∣∣ ξj
)
≥
(
δ

C

) 1
α

.

i.e., for each ξj ∈ Supp(ξj) there exists a sufficiently large positive measure of ξk with very similar

friendship groups: such that |w0 (ξt, ξk)− w0 (ξt, ξj)| < δ holds for all ξt. The consequences of this

assumption are similar to those of the Piecewise-Lipschitz assumption in Definition 2 of Zhang,

Levina, and Zhu (2017) (in the proof of Theorem 2 we show that under Assumption 1.2 ∀ε >

0∃K <∞ such that Supp(ξi) can be split into K disjoint regions, each of size at least
(
ε
C

) 1
α , such

that for any two points u, v which fall in the same region we have supξt |w0 (ξt, u)− w0 (ξt, v)| ≤ 2ε

and there exists a set of points ak, each from a different region, such that if k 6= j we have

supξt |w0 (ξt, ak)− w0 (ξt, aj)| > ε).

The example below shows that we can also think of this assumption as ensuring that the

distribution of ξi is bounded away from zero while w0 is sufficiently smooth:

Example. For an example of Assumption 1.2 and some intuition on what α means, suppose that

ξi ∈ [0, 1]2 and w0(ξi, ξj) = ξi · ξj. ξk satisfies supξt |w0 (ξt, ξk)− w0 (ξt, ξj)| < δ if it falls within a

region in [0, 1]2 centred at ξj with a radius proportional to δ and area proportional to δ2. If ξj is

at least δ away from all boundaries of the support, the region has the following shape:
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ξk1

ξk2

ξj

1

1

δ

δ

δ

δ

and area 3δ2. If the point ξj is closer to the boundary, we get the subset of this region which

overlaps with [0, 1]2. The smallest area possible is δ2

2 . If the distribution of ξi is uniformly bounded

away from zero, the measure of ξj that satisfy the condition is at least proportional to δ2, hence

ω(δ) ≥
(
δ
C

)2
. A sufficient condition for our assumption is if the distribution of ξi is uniformly

bounded away from zero and w0 is piecewise Lipschitz. If w0 is a well-behaved function and

Supp(ξi) ⊂ Rd, we would expect 1
α = d. We can think of 1

α as a measure of complexity of the

feature space: the more complex ξi are the harder the estimation.

Assumption 1.3 gives a list of fairly standard assumptions on the form of the kernel function.

These are quite strong, but the kernel is chosen by the researcher and many of the standard

kernels (e.g. the Epanechnikov kernel: K(u) = 3
4 (1 − u2)1(|u| < 1) or the triangular kernel:

K(u) = (1− |u|)1(|u| < 1)) satisfy all the requirements.

Assumption 1.4 specifies the range of bandwidths for which the method performs well. The

bandwidth an is a product of ρ4
n, which cancels out the normalisation in

(
ρ2
nd̂it

)2

, and bn −→ 0

which ensures that
ρ4nd̂

2
it

an
=

d̂2it
bn
−→ ∞ for all i 6= t. ρn can be estimated and bn is chosen by the

researcher. As the effective dimension of the support of ξi increases, i.e. α decreases, the estimation

becomes more difficult and we need bn to go to zero at a slower rate.

Theorem 1. Under Assumption 1:

max
i,j

∣∣∣∣∣ ĥn(ξi, ξj)− h0,n(ξi, ξj)

ρn

∣∣∣∣∣ p−→ 0.

Remark. Notice that we can write h0,n(ξi, ξj) = ρnw0(ξi, ξj), decomposing the linking function

into a bounded function w0 which does not depend on n and the sparsity ρn −→ 0. Without the

normalisation by 1
ρn

, the difference ĥn−h0,n would trivially go to zero because both components go

to zero at the rate ρn. In the statement of Theorem 1 we normalise by 1
ρn

to show that, even after

removing the trend to zero, the estimate of the linking function approaches its true value.
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Remark. Note on notation: we use maxi,j to refer to maximising over indices in a specific sample

of size n: it is a shorthand notation for maxi,j∈{1,2,...,n}. We alter use maxξi which refers to

maximising over all ξi ∈ Supp(ξi), i.e. all possible values in the support, not the set of realised

values in a specific sample.

Remark. Theorem 1 shows uniform convergence of ĥn(ξi, ξj) to h(ξi, ξj), where “uniform” refers

to convergence over all pairs of nodes in the original graph. The reason why we do not look at

uniformity over all general points in the underlying sample space of ξi
14 is because our estimator

of distance d̂
(2)
ij is defined in terms of similarity of friendship groups, hence it can only be estimated

for one of the observed individuals. In our procedure we never estimate ξi directly, we don’t put

strong assumptions on the space it comes from, and we don’t have a way of estimating d̂, and hence

ĥn, at a general point (u, v) outside of our realised set of observed individuals.

However, the results we show later in Theorem 2 can be seen as an extension of Theorem 1

to the whole support of ξi: under the assumption Assumption 1.2, for any ξi ∈ Supp(ξi), if n is

high enough, with high probability we can observer ξj similar enough to ξi that ĥn evaluated at ξj

provides a good approximation to ξi and the frequencies with which we observe different values of

ĥn is representative of the frequencies of similar values of the true h0,n over the support of ξi.

4.2 Consistency of the bootstrap procedure

4.2.1 Convergene of bootstrap network in terms of Wasserstein distance

To show that the distribution of the bootstrap network approaches that of the original network we

follow the approach from Levin and Levina (2019) (see their Section 4 for more details and moti-

vation). We start by defining an appropriate notion of convergence between network distributions.

Firstly, let the graph matching distance be the proportion of edges that differ between two graphs

after their vertices have been aligned to minimise the number of such differences:

Definition 4 (Graph matching distance). Let A1, A2 be two n×n adjacency matrices, Πn be the

set of n×n permutation matrices and let ‖A‖1,1 =
∑n
i=1

∑n
j=1 |Aij |. The graph matching distance

is:

dGM (A1, A2) = min
P∈Πn

(
n

2

)−1 ‖A1 − PA2P
′‖1,1

2
. (28)

Equipped with a distance between graphs we can define a distance between two distributions

over graphs by using the Wasserstein distance:

14. For example, if ξi ∼ U[0, 1] we could be interested in showing supu,v∈[0,1]

∣∣∣∣ ĥn(u,v)−h0,n(u,v)

ρn

∣∣∣∣ p−→ 0.
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Definition 5. Let A1, A2 be the adjacency matrices of two random graphs on n vertices and

let Γ (A1, A2) be the set of all couplings of A1 and A2 (i.e. all joint distributions with marginal

distributions matching those of A1 and A2). For p ≥ 1 the Wasserstein p-distance is given by:

Wp(A1, A2) = inf
ν∈Γ(A1,A2)

(∫
dpGM (A1, A2)dν

) 1
p

. (29)

Theorem 2. Let A be the observed adjacency matrix, let H be another adjacency matrix drawn

independently from the distribution of A and let A∗ be a bootstrap adjacency matrix derived from

A. Under Assumption 1:

W p
p (A∗, H) = op (ρn) . (30)

The graph matching distance is an upper bound on the cut metric, which in turn metrises

convergence of subgraph densities, hence Theorem 2 implies that all subgraph densities of A∗

converge to the same limit as those of H, proving that the bootstrap network distribution converges

to the original network’s distribution.

Remark. As noted by Levin and Levina (2019), this notion of convergence is not sufficient to

ensure that f(A∗) converges to the same distribution as f(H) for a general function f(·).

4.2.2 Consistency of bootstrap for U-statistics

Because the result of Theorem 2 is not sufficient to guarantee that the distribution of a function

of A∗ is close to the distribution of the same function of A, we show this directly for an important

class of functions with known limiting distributions.

Throughout this argument we use stars to denote the bootstrap equivalent, e.g. ξ∗i ∼ F̂n.

Definition 6. Set Mm: Let Mm be the set of all possible multisets15 of cardinality m with elements

from {1, 2, . . . ,m}.

That is, Mm contains all possible combinations of index numbers from 1 to m that are of length

m and can be all unique or have any value repeated any number of times.

Theorem 3. Let fUn (A(h(ξ), η), ρ, F ) be as in Eq. (25). There exists a normalisation τ(g)16 and a

function ˜̃g : Supp(ξ)m −→ R such that
g̃(h0,n(ξ(ι)))

ρ
τ(g)
n

= ˜̃g(w0(ξ(ι)))+O (ρn) and 0 < E (|˜̃g(w0(ξ(j)))|) <

15. A multiset is like a set but allows for repeated elements.

16. For m = 2, if g(0) 6= 0 we set ρ
−τ(g)
n = 1, ˜̃g (w0 (ξi, ξj)) = g(0) and if g(0) = 0 but g(1) 6= 0 we set ρ

−τ(g)
n = 1

ρn

and ˜̃g (w0 (ξi, ξj)) = g(1)w0 (ξi, ξj). More generally, for m ≥ 2, ρ
−τ(g)
n = 1

ρkn
where k is the smallest number of ones

such that g(·) evaluated at a vector of k ones and
(m
2

)
− k zeros is non-zero.
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∞ for all j ∈Mm. If Assumption 1 holds and:

V arF0
(EF0

(˜̃g(w0(ξ(ι)))|ξι1)) ≡ σ2
1 > 0

n(
n
m

)
ρ
τ(g)
n

−→ 0

then

1. fUn (A(h0,n(ξ), η), ρn, F0)
d−→ N(0,m2σ2

1) and

fUn

(
A
(
ĥn (ξ∗) , η∗

)
, ρ̂n, F̂n

)
d→ N(0,m2σ2

1) in probability.

2. supt

∣∣∣P (fUn (A(ĥn (ξ∗) , η∗
)
, ρ̂n, F̂n

)
≤ t
)
− P

(
fUn (A (h0,n (ξ) , η) , ρn, F0) ≤ t

)∣∣∣ p−→ 0.

Theorem 3 shows that for statistics which can be represented as in Definition 3 and are non-

degenerate (i.e. σ2
1 6= 0): 1. the limiting distribution in probability of the bootstrap statistic is

asymptotically normal and the same as the limiting distribution of the original statistic and 2. the

bootstrap is consistent, in the sense that the finite-sample distribution of the bootstrap statistic

approaches the finite-sample distribution of the original statistic as the sample size increases.

In the above theorem we add two new assumptions on top of those in Assumption 1. The

first one, σ2
1 6= 0, restricts our attention to non-denegerate U-statisitics. Levin and Levina (2019)

claim that in the case of degenerate U-statistics the approximation error is of a comparable size

to the leading term, implying that their bootstrap cannot recover the distributions of degenerate

U-statistics. As explained in Serfling (2009) section 5.5, in the degenerate case the correct normali-

sation would be of the form n
c
2

(nm)ρ2n
for some c ≥ 2 and we would expect a more complicated limiting

distribution than normal. In that case fn− f̃n = O

(√
nc

(nm)ρ2n

)
, which could go to zero sufficiently

fast to remain negligible. We suspect that recovering distributions of degenerate U-statistics could

still be possible with our method but we leave the detailed analysis for future work.

The other condition: n

(nm)ρτ(g)n

−→ 0 gives a restriction on the allowed level of sparsity. We

require 1
ρn

= o
(
n
m−1
τ(g)

)
, where τ(g) ∈ {0, 1, . . . ,

(
m
2

)
}. For sufficiently large τ(g) this condition may

be stronger than Assumption 1.1. This is not surprising: large τ(g) means that the function g takes

non-zero values only for very rare events, and these events are even less common in sparser graphs.

Hence to be able to maintain consistency we need to restrict the allowed level of sparsity.

This condition is needed to ensure that the fn−f̃n term does not affect the limiting distribution.

If n

(nm)ρτ(g)n

= O(1), the limit of this term would affect the resulting distribution and the overall limit

would be the current one plus the limit of this adjustment term. If n

(nm)ρτ(g)n

−→∞ this adjustment

term would dominate the asymptotic behaviour. In that case we would need to use normalisation by

n

(nm)ρ
τ(g)
2

n

. The currently dominating term under the new normalisation would go to zero. Deriving
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the distribution of the new dominating term is difficult due to a high level of dependence between

the elements of A.

Remark. Green and Shalizi (2022) specify the maximal allowed level of sparsity in two cases: when

the motif is acyclic they assume 1
ρn

= o (n) and for a general motif they require 1
ρn

= o
(
n

1
2m

)
for the empirical graphon and the weaker condition of 1

ρn
= o

(
n

2
m

)
for a general linking function

estimator, e.g. their histogram graphon.

These conditions are weakly stronger than our 1
ρn

= o
(
n
m−1
τ(g)

)
: when g(·) corresponds to an

acyclic motif we have τ(g) ≤ m − 117, hence m−1
τ(g) ≥ 1; when g(·) corresponds to a general motif

we have τ(g) ≤
(
m
2

)
18, hence m−1

τ(g) ≥
2
m ≥

1
2m .

However, for consistency of our linking function estimator we require 1
ρn

= o

(√
n

log(n)

)
, which

is stronger than the 1
ρn

= o (n) condition for acyclic motifs. For general motifs, our condition is

always weaker than the condition needed for the empirical graphon. In comparison with 1
ρn

=

o
(
n

2
m

)
for histogram graphon, our condition is weaker when m > 4 and stronger for m ≤ 4.

One of the motivations for looking at this class of functions on networks is that it contains

subgraph densities, which can be viewed as ‘network moments,’ in the sense that if two networks

match on the densities of all subgraphs they come from the same network generating distribution.

Theorem 3 implicitly shows that the bootstrap network distribution converges to the distribution

of the original network. However, as the subgraphs become more complicated we need to impose

stronger conditions on sparsity, meaning that full convergence of all subgraphs would only follow

for dense models in which ρn does not go to 0.

There are other linking function estimators (e.g. Zhang, Levina, and Zhu (2017)) and alternative

ways to resample nodes. The next result characterises the conditions needed for consistency of the

class of functions considered in Theorem 3 when we replace the (ĥn, F̂ ) in our procedure with

alternative estimators of (h0,n, F0).

Lemma 1. Theorem 3 holds for any estimators (hn, Fn) of (h0,n, F0) which satisfy:

1. EFn

((
1
ρn

(
hn(ξ∗i , ξ

∗
j )− h0,n(ξ∗i , ξ

∗
j )
))2
)

p−→ 0.

2. EFn (f (ξ∗(ι)))
p−→ EF0

(f (ξ(ι))) for all f : Supp(ξ)k −→ R such that EF0
(|f (ξ(ι))|) < ∞ for

all ι ∈Mk, for any k ≤ 2m− 1.

In the proofs in Appendix A we restate Theorem 3 in a generalised way which incorporates the

conditions given in Lemma 1.

17. τ(g) corresponds to the number of edges in the motif and m denotes the number of vertices. The maximal
number of edges in an undirected acyclic graph on m nodes is m− 1.

18. The maximal number of edges in an undirected graph on m nodes is
(m
2

)
.
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A consequence of Theorem 3 is that the bootstrap procedure can consistently recover critical

values and asymptotically valid confidence intervals, as stated in Corollary 1. In order to be able to

define the confidence intervals and comment on their coverage we need an inverse of the bootstrap

distribution, but Jn

(
t, ĥn, F̂n

)
may not necessarily be continuous or strictly increasing in t, hence

it may not be invertible in the standard sense. Because of this we define the inverse of a distribution

in the following way:

Definition 7. Let:

J−1(α, h, F ) ≡ inf {t : J(t, h, F ) ≥ α} (31)

be the αth quantile of the distribution J(t, h, F ).

Corollary 1. Under the conditions of Theorem 3:

1. J−1
n

(
1− α, ĥn, F̂n

)
p−→ c1−α, where c1−α is the 1− α critical value from N(0,m2σ2

1)19.

2. If F0 doesn’t enter the function fUn directly but only through a parameter θ20: fUn (A(h0,n(ξ), η), ρn, θ),

then the (1− α) confidence interval for θ constructed as:

CIn

(
1− α,A, ĥn, F̂n

)
=
{
θ : J−1

n

(α
2
, ĥn, F̂n

)
≤ fUn (A, ρ̂n, θ) ≤ J−1

n

(
1− α

2
, ĥn, F̂n

)}
(32)

is asymptotically valid:

Ph0,n,F0

(
θ ∈ CIn

(
1− α,A, ĥn, F̂n

))
p−→ 1− α. (33)

In defining the bootstrap statistic and forming confidence intervals we do not normalise the

fn(·) by the estimated variance. This is in part because the variance estimators may not be readily

available, and even when they are, they tend to be complicated (e.g. for the subclass of motif

densities Green and Shalizi (2022) Lemma 2 gives an expression for an estimator of variance. It is

derived combinatorially by considering all motifs that can be achieved by merging two copies of

the motif of interest on partially overlapping sets of nodes). Another reason is that, as pointed out

by Hahn (1993), convergence weakly in probability ensures convergence of moments over the set

of bounded and Lipschitz continuous functions, which does not include f(x) = x2, meaning that

weak convergence in probability of our bootstrap estimator does not guarantee the consistency of

19. I.e. Φ

(
c1−α
m2σ2

1

)
= 1− α where Φ(·) denotes the CDF of N(0, 1).

20. For example in equation (25) we have θ = Eh0,n,F0
(g(A(ι))).
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its variance. When properties of the variance estimate are unknown, it is safer to use the percentile

method for the construction of confidence intervals.

However, when a reliable variance estimate is known, normalising the statistic of interest by

the estimate of its standard deviation could improve the performance of the bootstrap procedure.

While we do not analyse the rates theoretically, the logic should be close to the case of standard

bootstrap, where Edgeworth expansion arguments show that a normalised bootstrap with a pivotal

limiting distribution can achieve a faster rate of convergence, see e.g. Hansen (2014) sections 10.8-

10.11.

5 Simulations

We test the performance of our procedure using Monte Carlo simulations. We simulate the true

adjacency matrices for ξi
iid∼ U[0, 1] and one of the following linking functions:

1. dot product function: h(ξi, ξj) = ρnξiξj .

2. horseshoe function21: h(ξi, ξj) = ρn
2

(
e−200(ξi−ξ2j )

2

+ e−200(ξj−ξ2i )
2)

.

3. high-density function:

h(ξi, ξj) = ρn
0.975

(
1− 1

(∣∣ 1
2 − ξi

∣∣ ≤ 0.05
)
1
(∣∣ 1

2 − ξj
∣∣ ≤ 0.05

)) (
1− 1

2

(∣∣ 1
2 − ξi

∣∣+
∣∣ 1

2 − ξj
∣∣)).

The plots of these functions are included in Appendix B.3.

In the estimation procedure we use the normal kernel: K(u) = e−
u2

2 and the bandwidth a(opt)

chosen by maximising `(A, an), as described in Section 3.5.

We test the performance of the algorithm for a few different statistics of interest:

• density: fn(A) = 1

(n2)

∑∑
1≤i<j≤n

Aij , i.e. the number of edges divided by the number of possible

edges;

• triangle density: fn(A) =
(
n
3

)−1 ∑∑∑
1≤i<j<k≤n

AijAjkAik, i.e. the proportion of all subsets of 3

nodes that are fully connected;

• transitivity: fn(A) = 3#triangles
#triads =

tr(A3)∑n
i=1

∑n
j=1(A2)ij−tr(A2) , i.e. the ratio of fully connected

triples to connected triples;

• kth largest eigenvalue of the adjacency matrix: fn(A) = λk(A);

• maximal betweenness centrality:fn(A) = maxi
∑
j,k

# shortest paths between j and k through i
# shortest paths between j and k ;

21. This function was also used by Green and Shalizi (2022). They borrow it from Wang (2016), who described it
as “a challenging example for graphon estimation.”
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• modularity of the Louvain community detection algorithm: for a given partition of nodes

into communities, modularity is defined as the proportion of edges within communities minus

the proportion if the edges were distributed at random. The Louvain community detection

algorithm aims to find a partition which maximises modularity by iteratively moving nodes

to communities and aggregating communities until no further improvement is possible. We

used functions ‘louvain communities’ and ‘modularity’ from the Python networkx package,

see their documentation for precise definitions.

In order to speed up the simulations we obtain the confidence interval coverage using the WARP

procedure from Giacomini, Politis, and White (2013):

1. Generate S true adjacency matrices on n nodes using the same true linking function (usually

S = 1000, n between 25 and 1000).

2. For each true adjacency matrix As:

(a) Find the optimal bandwidth a
(opt)
s = maxa `(As, a).

(b) Calculate the matrix ĥn,s based on As with bandwidth a
(opt)
s .

(c) Resample n nodes of As to form the nodes of the bootstrap graph.

(d) Generate a single bootstrap adjacency matrix A∗s,1 by adding an edges between nodes

with probabilities determined by ĥn,s.

Note that the number of bootstrap replications is B = 1.

3. Estimate the true value by the average of the statistic evaluated for the true graphs: f
(true)
n =

1
S

∑S
s=1 fn(As) (or use the theoretical true value, if known).

4. Calculate the deviation of the statistic in the bootstrapped graph from the statistic evaluated

for the corresponding true graph: fn(A∗s,1) − fn(As) for all s ∈ {1, . . . , S}. Denote the αth

quantile of the empirical distribution of this set by q̂α

({
fn(A∗s,1)− fn(As)

}S
i=1

)
.

5. Calculate the confidence intervals as: CLs = [CLls, CL
u
s ], where

CLls = fn(As)− q̂1−α2

({
fn(A∗s,1)− fn(As)

}S
i=1

)
CLus = fn(As)− q̂α2

({
fn(A∗s,1)− fn(As)

}S
i=1

)
.

6. Store the empirical coverage, i.e. the proportion of confidence intervals which cover the true

value: 1− α(emp) = 1
S

∑S
s=1 1

(
CLls ≤ f

(true)
n ≤ CLus

)
.
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The following plots and tables show results of some of our simulations. The code used in the

simulations can be found in Appendix B.1 and tables with more results are in Appendix B.2.

(a) Confidence interval coverage for density. (b) Confidence interval coverage for λ1.

Figure 1: Confidence interval coverage for different sample sizes n based on Monte Carlo simulations
using the product generating function and ρn = 0.1875.

We start by looking at the confidence interval coverage for different values of n, ρn and α.

From Fig. 1 we can see that performance at different α is quite similar, but larger values have

proportionally larger deviations and allow us to see the trend more clearly. Hence although in

practice we tend to be most interested in the 95% confidence intervals, we present results for 70%

or 80% in most of our plots. From Fig. 2 we can see that at a constant density level (no sparsity,

ρn doesn’t decrease with n) the performance improves with sample size. For n ≥ 250 all statistics

achieve good confidence interval coverage levels, although not always perfect: we may get coverage

of e.g. 60% instead of 70%. As the sparsity level increases (ρn −→ 0), the performance tends to get

worse, but remains close to desired for statistics which are easier to estimate (e.g. density, triangle

density, or the highest eigenvalue) but gets significantly worse for more complicated statistics (e.g.

λ10). The bottom two panels check performance for sparsity levels at which our theoretical results

don’t give any performance guarantees: as expected, the performance is poor in those cases.
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Figure 2: 70% confidence interval coverage for a range of statistics for the horseshoe generating
function at different levels of sparsity.

Next we compare the performance of different variations of our method and some of the existing

competitor methods. Fig. 3a shows the performance comparison between: HK1 (our main method

based on ĥ ≡ ĥ(K1) with a(opt)), HK2 (our bootstrap method but using the linking function

estimator ĥ(K2) with a(optK2) based on ĥ(K2)), HNN1 (our bootstrap method but but using the

linking function estimator ĥ(NN1) from Zhang, Levina, and Zhu (2017) with their optimal choice

of neighbourhood size), emp (empirical bootstrap from Green and Shalizi (2022)), dot prod k (the

bootstrap method from Levin and Levina (2019) based on assuming a k-dimensional ξi), asymptotic

estimated variance (the asymptotic distribution from Bickel, Chen, and Levina (2011) with variance

estimated according to the formula in Green and Shalizi (2022)), asymptotic infeasible variance (the

asymptotic distribution from Bickel, Chen, and Levina (2011) with the true theoretical variance),

LLS L and LLS Q (the linear and quadratic methods from Lin, Lunde, and Sarkar (2020)).
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(a) Density: 70% confidence interval coverage
across different methods.

(b) Triangle density: 80% confidence interval
coverage across different methods.

Figure 3: Confidence interval coverage for different methods using the product generating function.

HK1 and HK2 perform very similarly: we choose to use HK1 as the main method since HK2 is

more computationally intensive and HK1 shows slight advantage for sparse graphs. HNN1 performs

slightly worse and its performance drops more significantly for sparser graphs. We believe this is

mostly due to the choice of bandwidth (HNN1 relies on the theoretical optimal bandwidth instead

of our numerically chosen a(opt)). For U-statistics the empirical bootstrap performs very well and

remains good even at sparsity levels our methods can’t handle. This suggests that for sparse graphs

we may want to consider lower bandwidth choice than a(opt), which would make our method more

similar to the empirical bootstrap. The dot product bootstrap of Levin and Levina (2019) is

presented for the correctly specified case of k = 1, as well as for k = 3. This method should have

an advantage over the other ones since it is parametric and for k = 1 it is based on a correctly

specified functional form of the linking function. However, it achieves coverage which is too high,

over 90% instead of the required 70%. The linear and quadratic methods from Lin, Lunde, and

Sarkar (2020) are very similar to each other and suffer from the same issue of giving confidence
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intervals with higher coverage than desired.

Most of the competitor methods can only be applied to U-statistics. An exception is the em-

pirical bootstrap which can be seen as a limiting case of our procedure with bandwidth close to

0. From Fig. 4 and Fig. 5 we can see that the empirical bootstrap would perform very poorly

for statistics such as lower eigenvalues, max betweenness centrality and Louvain CDA modularity.

There is also a version of the dot product bootstrap Levin and Levina (2019) which applies to more

general functions, but, probably due to our bad coding or relatively small sample sizes, we were

getting many estimated probabilities outside of [0, 1] which led to very bad performance, likely not

representative of the quality of their method, and is not presented here.

In the final set of simulations we compare the confidence interval coverage with different band-

widths of the form ca(opt). Fig. 4 shows an example when all statistics perform well for our default

choice with c = 1. For most statistics using a smaller bandwidth is not an issue: they do reasonably

well for c ≤ 1, even as small as c = 0.01, although they don’t perform as well as for c close to

1. However, this is not universally true: some statistics, such as λ10 and maximal betweenness

centrality, have very poor coverage outside of the region of 0.9 ≤ c ≤ 1.25. The coverage for all

statistics gets significantly worse when we use wider bandwidths (c ≥ 10).

Figure 4: Confidence interval coverage for different bandwidths c× a(opt): comparison of different
statistics at α = 0.3, n = 500 and ρn = 0.1125 based on Monte Carlo simulations using the
horseshoe generating function.

This great performance around c = 1 is not guaranteed. In Fig. 5 we consider a smaller graph,

for which confidence interval coverage for simple statistics such as density, triangle density or the

largest eigenvalue is not too sensitive to the choice of bandwidth: from 0.01a(opt) to 4a(opt) the
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Figure 5: Confidence interval coverage for different bandwidths c× a(opt): comparison of different
statistics at α = 0.3, n = 300 and ρn = 0.1875 based on Monte Carlo simulations using the product
generating function.

performance remains good. However, other statistics, such as eigenvalues below the largest one

(e.g. λ2, λ3 and λ10 in Fig. 5) have zero coverage for low values of c (worryingly, in some cases

including c = 1) but perform relatively well for c ' 2.

When the graph is sufficiently large and dense, c close to 1 gives good performance of most

statistics we have checked. However, the performance does depend on the bandwidth choice and

some statistics may be estimated poorly with the default bandwidth, especially when the graph is

relatively sparse and the statistic is more complicated. In those cases experimenting with different

values of c could give more reliable results. This is one advantage of our method over the empirical

bootstrap (which can be seen as a limiting case of our model with c = 0): while at the default

setting both algorithms may be bad at estimating confidence intervals for lower eigenvalues, the

performance of our method can be improved by selecting a larger bandwidth (oversmoothing) while

the empirical bootstrap does not depend on any parameters that could be tweaked in a similar

way.

The possibility of a poor performance at a(opt) raises a question: how can we choose the best

bandwidth in an application, when we only have one observed network and no way to run a Monte

Carlo simulation confirming the coverage? Luckily, there is an easy way to verify our choice. Fig. 6

shows an example of bootstrap confidence intervals formed from B = 1000 bootstrap replications

for different statistics of a specific single true graph A estimated using different bandwidths. We

can use it in the following way: if the statistic estimate from the original graph is in the middle
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(a) Confidence intervals for different statistics
for the product generating function at n = 300
and ρn = 0.125.

(b) Confidence intervals for different statistics
for the horseshoe generating function at n = 500
and ρn = 0.1125

Figure 6: Confidence intervals for different statistics and for bandwidths c×a(opt) based onB = 1000
bootstrap graphs.

of the confidence interval formed by bootstrapped graphs, the choice of the bandwidth is good. In

Fig. 6a we see that density is always estimated relatively well, transitivity remains well-estimated

for smaller than optimal bandwidths but is underestimated when the bandwidth is too large, and

λ3 is overestimated for smaller than optimal bandwidths but remains well estimated for larger than

optimal bandwidth. In simulations we have noticed a pattern that when the true value is above

the estimated confidence interval lowering the bandwidth tends to improve the performance, while

when the value from the original graph is below the confidence interval increasing the bandwidth

often solves the problem. However, this is not always true: the lowest panel in Fig. 6b shows that

λ10 is overestimated when bandwidth is either too low or too high compared to the optimal one.

The middle panel also shows that the choice of a statistic doesn’t determine the behaviour: for the

horseshoe function λ3 is better estimated for lower bandwidths and underestimated for higher ones,

which is a different pattern than that of λ3 from the product generating function in the bottom of

Fig. 6a.

6 Application: the Diffusion of Microfinance

For our application, we use the data from Banerjee, Chandrasekhar, Duflo, and Jackson (2013), a

paper which analyses how information about microfinance spreads through social networks in 43

villages in India.

Prior to the introduction of a microfinance program they surveyed households in these villages
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and formed a network of connections based on 12 binary signals indicating if households knew each

other (e.g. did they visit each other’s homes, lend each other money, etc.). Each of these variables

could be seen as a our A matrix, or we could combine them by taking a union, like in the original

paper, to get an overall adjacency matrix. This is compatible with out framework: the closer two

households are, the higher the probability that they will report each other as connected, hence we

can view the reporting of a connection (Aij = 1) as a signal from a Bernoulli distribution with

probability of success proportional to the closeness of their friendship (h0,n(ξi, ξj)).

Once the microfinance program entered the villages, they observed a set of first-informed vil-

lagers (injection points, chosen because they were village leaders who tend to be well-connected)

and subsequent participation by households over a number of years.

One of the goals of the paper is to understand how the information about the program was

spreading through the villages. This is modelled by a parametric diffusion model. Firstly, the

probability pit of household i with characteristics Xi participating when first informed is estimated

from the logistic function:

log

(
pit

1− pit

)
= X

′

iβ.

The parameter β̂ is estimated using the information about the leaders only. The aim is to

estimate the probability of transferring information about a microfinance program by people who

participate in it themselves (qP ) and by those who know about it but do not participate (qN ). This

is done by simulating the information spreading over time discretised into T periods (trimesters).

In each period the newly informed decide whether to participate (mit = 1) with probability pit,

then each informed household spreads the information to its neighbours with probability mitq
P +

(1−mit)q
N .

For each village v and for each set of discretised parameter values
(
qP , qN

)
they simulate

the spread of information and adoption decisions, and then calculate moments msim,v

(
qP , qN

)
based on the final set of participating households (e.g. the fraction of households that have no

participating neighbours but participate themselves, or the covariance of households participating

in the program with the share of second neighbours that are participating). The average of these

simulated moments across S simulations is compared to the observed empirical moments for the

given village, memp,v. They then choose the parameter values which minimise the average of a
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function of deviation of simulated moments from empirical moments across all villages:

(q̂P , q̂N ) = arg min
qP ,qN

(
1

43

43∑
v=1

msim,v

(
qP , qN

)
−memp,v

)′
Ŵ

(
1

43

43∑
v=1

msim,v

(
qP , qN

)
−memp,v

)
.

where Ŵ = 1
43

∑43
v=1

(
msim,v

(
q̃P , q̃N

)
−memp,v

) (
msim,v

(
q̃P , q̃N

)
−memp,v

)′
for a first-stage es-

timates q̃P , q̃N obtained by using I as the weighting matrix. To form confidence intervals they

use bootstrap which resamples whole villages. The resulting estimates are shown as the “Original”

ones in Fig. 7.

Figure 7: Estimates of qP (left) and qN (right) with 95% confidence intervals based on aggregating
all villages: a comparison of the original result from Banerjee, Chandrasekhar, Duflo, and Jackson
(2013) and our two methods.

The original paper considers a few variations of the model, including one which allows for

endorsement effects. We only consider the information model without endorsement because it’s

less computationally demanding (the parameters are identified using a grid search and increasing

the dimension of the parameter space by one leads to an exponential growth in the number of

required simulations) and the original paper did not find evidence of a significant endorsement

effect.

In our replication we use the same procedure for finding the parameters but we use our bootstrap

to form confidence intervals. Instead of resampling whole villages we can estimate the matrix ĥn

for each of the villages22 and use it to generate B = 1000 new sets of 43 villages with structures

similar to the original ones. We can then repeat the whole estimation procedure for each new set of

villages and obtain bootstrap estimates (q̂∗Pb , q̂∗Nb ). The confidence intervals are formed by taking

the α
2 and 1− α

2 quantiles for the distributions of q̂∗Pb and q̂∗Nb . These estimates are presented in

22. The villages are assumed to be independent due to relatively large geographical distances between them. If
they were not independent we could treat all households as belonging to one larger network.
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Fig. 7 as the “A bootstrap”. They are very similar, to the original estimates, with slightly narrower

confidence intervals23.

The replication of the original result indicates that our method performs well, though it would

not be advised in this situation because it is much more computationally demanding than the origi-

nal bootstrap. However, with our setup we can do more. It’s reasonable to assume that the spread of

information is more likely between households which have a stronger connection (higher h0,n), i.e.

we can view the current model as an approximation to the true model in which the probability of

spreading information depends not on the binary connection status Aij , but on the actual strength

of connection h0,n (ξi, ξj). Since ĥn estimated as part of our procedure is a consistent estimate of

h0,n, we can repeat the simulations using a diffusion model based on ĥn rather than on A (the

imperfect signal about h0,n). We assume that in any period t ∈ {1, . . . , T} the informed individual i

spreads the information to another individual j with probability ĥn (ξi, ξj)
(
mitq

P + (1−mit)q
N
)
.

The rest of the estimation procedure remains unchanged. The resulting estimates are reported as

the “ĥ bootstrap” estimates in Fig. 7. The confidence intervals are now much narrower than in the

previous two cases and the conclusions differ as well: qP is estimated to be higher (point estimate

0.05, 95% confidence interval [0.35, 0.65]) while qN is essentially zero (point estimate 0.004, 95%

confidence interval [0, 0.05]).

This contrasts with the findings of Banerjee, Chandrasekhar, Duflo, and Jackson (2013) who

highlight the importance of non-participants in the diffusion process by showing that constraining

qN to be equal to zero leads to simulated participation dropping from 20.0% to 13.97%24. Our

model shows that if we use a diffusion model based on ĥn instead of A the estimated value of qN

is not distinguishable from zero (point estimate 0.002, 95% confidence interval [0, 0.009]) and the

simulated participation drops from 18.46% at the optimal values to 18.21% when we restrict qN

to 0, a drop of one seventy-fifth instead of one third. Using the more realistic assumption that the

likelihood of spreading information depends on how well the households know each other removes

the need for information spreading by non-participants.

Another extension made possible by our model is performing the analysis on individual village

level. So far we have assumed that the parameters are common across all villages, and with the

original bootstrap resampling whole villages there was no way to form confidence intervals on at the

village-level. With our bootstrap method, instead of minimising a (weighted) average of deviations

of simulated moments from empirical moments across all villages, we can minimise them for each

23. Note that the confidence intervals for qN can’t get much narrower because of the discretisation of the parameter
space.

24. The actual observed participation rate was 19.38%. It is not used as one of the moments matched in the
parameter estimation.
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Figure 8: Densities of all 43 villages with bootstrap confidence intervals plotted against village size
on the horizontal axis.

individual village. This allows us to:

1. Check if all the villages come from the same network generating distribution. We

bootstrap each village separately, find confidence intervals for some network statistics (e.g.

density, or the largest eigenvalue) and see if these intervals overlap for all villages.

2. Estimate the qP and qN parameters (and their confidence intervals) for each

village separately, see if there are systematic differences between villages. If there

are differences, see if the hypotheses (qN > 0 and qP > qN ) hold in each village.

We firstly look at densities of all the 43 villages. Our bootstrap method allows us to not only

obtain their point estimates but also add confidence intervals to see if the villages are systematically

different from each other. Fig. 8 shows that the villages become more sparse as their size increases

(consistent with the assumption that ρn −→ 0 as n −→∞). The confidence intervals in this graph are

formed using the same bootstrapped villages that were used for estimating the model parameters.

Moving on to the model parameters, we have repeated the estimation using the original diffusion

model based on the adjacency matrix A (Fig. 9) and the new diffusion model based on the linking

probabilities ĥn (Fig. 10). We can see that the two methods produce similar though not identical

results. For some villages the estimation is very imprecise, leading to very wide confidence intervals.

At least half of the villages have qN precisely estimated to be zero, even in the model based on A:

this may suggest that it’s the imprecisely measured villages which drive the aggregate estimate to

be positive.

In the last panels we can see that one of the predictions of the model, qP − qN > 0, cannot be

concluded for most of the villages as we can’t reject the hypothesis that qP − qN = 0 (mostly due
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Figure 9: Estimates of qN (top), qP (middle) and qN − qP (bottom) with 95% confidence intervals
for individual villages using an optimal weight matrix and empirical moments for the original
villages, A-version.

to imprecise measurements).

A practical extension of the current analysis would be to identify the village characteristics

which help predict the estimated ranges of qP and qN . This would help policymakers choose villages

in which the microfinance programs would have the highest chance of success or personalise the way

in which the initial group of informed leaders is chosen depending on the information transmission

characteristics in a given village.

7 Conclusion and Extensions

In this paper we have proposed a nonparametric linking function estimator and a related network

bootstrap procedure and we have provided conditions under which both achieve some notions of
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Figure 10: Estimates of qN (top), qP (middle) and qN −qP (bottom) with 95% confidence intervals
for individual villages using an optimal weight matrix and empirical moments for the original
villages, H-version.

consistency.

In the future projects (or the future versions of this project) we aim to provide a theoretical

justification for consistency of our bootstrap method over a wider class of statistics, which is

suggested by the promising results in our simulations. Most importantly, we would like to extend

our results to regression models in which the outcome depends, possibly in a complicated way,

on the entire adjacency matrix (e.g. spillover effects from neighbours). Unfortunately, it looks

like in these cases the behaviour is not well approximated by that of an average of i.i.d. random

variables, which makes deriving asymptotic results tricky. This is both an obstacle in proving

bootstrap consistency and a reason why bootstrap methods are particularly needed when it comes

to strongly dependent data structures such as networks.
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One way in which we may be able to get around this issue is by looking for another notion

of network distance than the Wasserstein metric proposed by Levin and Levina (2019). More

specifically, one which would be sufficient for proving that the convergence is preserved after a

transformation.

A less closely related future project inspired by this paper could be formulating a fast numerical

procedure which allows for the selection of an objective-specific optimal bandwidth in two-step

procedures. As in our setup, suppose we have a two-step estimation procedure where in the first

step we estimate some parameter dependent on a tuning parameter (like ĥn based on an), which we

then plug into a (possibly random) second-step estimation (e.g. density in the resulting network).

We ultimately care about the result of the second step (for us, the bootstrap confidence interval

coverage of the statistic estimated in the second step) and we wish to optimise its performance by

choosing an optimal tuning parameter in the first step. In this paper we have relied on optimising

the first-step estimation (a(opt) was chosen to optimise the estimation of ĥn), but this was shown not

to provide the best results in the second step across all second-step statistics. We have considered

some algorithms which do rely on the second step performance (e.g. the approximate average MSE

approach), but which are too slow to be useful in practice.

Finally, we believe that forming models which use ĥn as a better proxy for the strength of

connections between individuals than the adjacency matrix A opens up exciting opportunities for

empirical research.
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List of all notation

The notation in this file can get a bit heavy so we provide this list for reference.

• n – sample size, number of individuals in the network.

• A – an n× n adjacency matrix. Binary, symmetric, observed.

• Aij – i, jth entry of the matrix A: 1 if i, j are connected (are neighbours), 0 if they are not.

• i, j, k, s, t – usually used to refer to one of the n individuals.

• ξi – vector of characteristics of individual i, enters the linking function.

• F0 – distribution of ξi.

• h0,n – linking function, takes characteristics ξi, ξj as inputs and outputs the probability with

which individuals i and j are linked. If the inputs are vectors ξ(ι) = (ξι1, ξι2, . . . , ξιm) of

characteristics of multiple individuals it outputs the matrix of linking probabilities.

• ρn – density/sparsity parameter. Density in the sense that it is the expected edge density,

sparsity in the sense that as n −→∞ the density of edges decreases: ρn −→ 0.

• w0 – underlying linking probability before accounting for sparsity: ρnw0(ξi, ξj) = h0,n(ξi, ξj).

• ϕ(ξi, ξt) = E
(
AisAts
ρ2n
|ξi, ξt

)
– a function measuring the probability of a common friend

between i and j normalised by the sparsity level.

• dij =

√
E
(
E (w0 (ξt, ξs) (w0 (ξi, ξs)− w0 (ξj , ξs))| ξi, ξj , ξt)2

∣∣∣ ξi, ξj) – theoretical distance

between i and j.

• d̂ij = 1
ρ2n

√
1
n

∑n
t=1

(
1
n

∑n
s=1Ats (Ais −Ajs)

)2
– estimated distance between i and j.

• Dij – shorthand notation for ρ4
nd̂

2
ij used in the description of the bootstrap procedure.

• ĥn – estimated linking function:

ĥn(ξi, ξj) =
h̃n(ξi, ξj) + h̃n(ξj , ξi)

2
where h̃n(ξi, ξj) =

∑n
t=1
t6=j

K
(
ρ4nd̂

2
it

an

)
Atj∑n

t=1
t6=j

K
(
ρ4nd̂

2
it

an

)

• Hij – shorthand notation for ĥn(ξi, ξj) evaluated at a(opt) used in the description of the

bootstrap procedure.

• K – kernel function used in estimating linking probability.
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• an – a bandwidth parameter, chosen by the researcher.

• F̂n – the empirical distribution function of ξi; assigns equal probability to each of the original

observations.

• ∗ – a bootstrap equivalent, e.g. ξ∗i ∼ F̂n is the bootstrap version of ξi ∼ F0.

• ˆ – an estimate.

• maxi,j ≡ maxi,j∈{1,2,...,n} – maximum over indices in a specific sample of size n.

• maxξi ≡ maxξi∈Supp(ξi) – maximum over all ξi ∈ Supp(ξi).

• N(ξj , δ) =
{
ξk : supξt |w0(ξt, ξk)− w0(ξt, ξj)| < δ

}
– the neighbourhood of ξj of size δ.

• ω(δ) = infξj∈Supp(ξj) P (ξk ∈ N(ξj , δ)| ξj) – the infimum over all possible ξi of the measures

of their neighbourhoods of size δ.

• bn = an
ρ4n

– a bandwidth parameter normalised by sparsity; the effective bandwidth size after

accounting for the rate at which density goes to zero.

• ĥ−n – leave-one-out version of ĥn, evaluated in the same way as ĥn but without the observa-

tions t = i, j. Used for numerically choosing the optimal bandwidth.

• `(A, an) – log-likelihood used for numerically choosing the optimal bandwidth. Defined in

Eq. (16).

• a(opt) – numerically chosen optimal bandwidth. Defined in Eq. (17).

• B – number of bootstrap replications.

• fn(An(h0,n(ξ), η), ρn, F0) – a function whose distribution we are interested in.

• η – a vector of random variables which together with the linking function determine the

realised links in A. We assume ηij
ind∼ U[0, 1] for 1 ≤ i ≤ j ≤ n and η independent of ξ.

• f̃n (h0,n (ξ) , ρn, F ) ≡ E(fn(An(h0,n(ξ), η), ρn, F0)|ξ) – a function whose distribution we are

interested in after averaging out the variation due to observing A instead of h0,n.

• Eh0,n
, e.g. in Eh0,n

(fn(An(h0,n(ξ), η), ρn, F0)|ξ) =
∫
fn(An(h0,n(ξ), η), ρn, F0)dη – expecta-

tion taken with respect to the independent Bernoulli trials with probabilities determined by

h0,n.

• Eh0,n,F0
– expectation taken with respect to both the Bernoulli trials and the true distribution

of ξ.

47



• ι – a vector of m nodes from {1, . . . , n}.

• A(ι) – the adjacency matrix of the subgraph with nodes ι (i.e. A from which we remove n−m

rows and columns not in ι).

• m – usually denotes the size of a subgraph or an order of U-statistic.

• g – a kernel function (in the U-statistic sense); a function of a subset of A.

• g̃ – a kernel function (in the U-statistic sense); a function of a subset of h0,n. Equal to g after

averaging out the variation due to observing A instead of h0,n.

• τ(g) – a normalisation chosen to ensure
Eh0,n,F0

(g(An(ι)))

ρ
τ(g)
n

= Op(1).

• ˜̃g – the leading term in the normalised g̃; a function of a subset of w0. Op(1).

• J̃n – the distribution of f̃n.

• Jn – the distribution of fn.

• Ĵn,B – an estimate of the distribution of fn based on B bootstrap samples.

• J – limiting distribution of Jn as n
∞−→: Jn(t, h0,n, F0)⇒ J(t, w0, F0).

• ⇒ – weak convergence.

• a.s.⇒ – weak convergence almost surely, see Definition 1.

• p⇒ – weak convergence in probability, see Definition 2.

• dW – distance between measures which metrises weak convergence.

• f(S) = {f : S −→ R : |f(x)− f(y)| ≤ dS(x, y), supx∈S |f(x)| ≤ 1} – the set of Lipschitz con-

tinuous and bounded real-valued functions on a metric space S equipped with distance dS .

• Cw,F,ρ – the set of non-random sequences of pairs of functions and distributions {(hn, Fn)}∞n=1

which satisfy a set of conditions on convergence of moments, see Definition A.1.

• CIn – a bootstrap confidence interval as defined in Eq. (32).

• Mm – the set of all possible multisets of cardinality m with elements from {1, 2, . . . ,m}

• ρ̂n – estimator of density; the density of the observed adjacency matrix A.

• λk(A) or λk – the kth largest eigenvalue of matrix A.

• q̂α – the estimate of αth quantile.
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• qP – in the application, the probability of transferring information about a microfinance

program by program’s participants

• qN – in the application, the probability of transferring information about a microfinance

program by those who don’t participate the program themselves.

• C – generic positive constant, its value may change between different expressions in which it

is used.

• Cε – a positive constant which depends on ε > 0. Its value may change between different

expressions in which it is used.

• Tn – a remainder term used in the proof of Theorem 1.

• Mw – an upper bound on the value of w0: supξi,ξj |w0(ξi, ξj)| ≤Mw.

• rn(i) = E
(
K
(
d2it
bn

)∣∣∣ ξi) – the shorthand notation for the expected kernel weights based on

the distance between i and other individuals used in the estimation of ĥn (ξi, ξj).

• r̂n(i) = 1
n−1

∑n
t=1
t6=j

K
(
d̂2it
bn

)
– the estimate of rn(i).

• rn = infξi rn(i) – the smallest possible expected kernel weight. We need to ensure it’s not

too small or we would not be able to successfully estimate h0,n (ξi, ξj).

A Appendix: proofs

A.1 Proof of consistency of the linking function estimator

Proof of Theorem 1. Throughout this argument we use Cε to denote a positive constant which

depends on ε > 0. The value of Cε may change between different expressions in which it is used.

By definition,

max
i,j

∣∣∣∣∣ ĥn(ξi, ξj)− h0,n(ξi, ξj)

ρn

∣∣∣∣∣ = max
i,j

∣∣∣∣∣∣∣∣
1

n−1

∑n
t=1
t6=j

K
(
d̂2it
bn

)(
Atj−h0,n(ξi,ξj)

ρn

)
1

n−1

∑n
t=1
t 6=j

K
(
d̂2it
bn

)
∣∣∣∣∣∣∣∣

= max
i,j

∣∣∣∣∣∣∣∣∣∣
1

n−1

∑n
t=1
t6=j

K
(
d̂2it
bn

)(
Atj−h0,n(ξi,ξj)

ρn

)
E
(
K
(
d2it
bn

)
|ξi
)

+

(
1

n−1

∑n
t=1
t 6=j

K
(
d̂2it
bn

)
− E

(
K
(
d2it
bn

)
|ξi
))
∣∣∣∣∣∣∣∣∣∣

≤

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=j

K
(
d̂2it
bn

)
rn(i)

(
Atj − h0,n(ξi, ξj)

ρn

)∣∣∣∣∣∣∣∣

1 + max

i,j

∣∣∣∣∣∣∣∣1−
E
(
K
(
d2it
bn

)
|ξi
)

1
n−1

∑n
t=1
t 6=j

K
(
d̂2it
bn

)
∣∣∣∣∣∣∣∣
 (34)
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The inequality follows from max
∣∣∣ a
b+c

∣∣∣ ≤ max
∣∣a
b

∣∣ + max
∣∣∣ ac
b(b+c)

∣∣∣ ≤ (
max

∣∣a
b

∣∣) (1 + max
∣∣∣ c
b+c

∣∣∣),

where b = E
(
K
(
d2it
bn

)
|ξi
)

. In Lemma A.1 we show that the second factor converges almost surely

to one.

We now focus on the first factor. Since K(·) is Lipschitz continuous with a Lipschitz constant

C (by Assumption 1.3):

K

(
d̂2
it

bn

)
≤ K

(
d2
it

bn

)
+

∣∣∣∣∣K
(
d̂2
it

bn

)
−K

(
d2
it

bn

)∣∣∣∣∣ ≤ K
(
d2
it

bn

)
+ C

∣∣∣∣∣ d̂2
it − d2

it

bn

∣∣∣∣∣ .
It follows that

max
i,j

∣∣∣∣∣∣∣∣
1

(n− 1)rn(i)

n∑
t=1
t 6=j

K

(
d̂2
it

bn

)(
Atj − h0,n(ξi, ξj)

ρn

)∣∣∣∣∣∣∣∣
≤ max

i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=j

K
(
d2it
bn

)
rn(i)

(
Atj − h0,n(ξi, ξj)

ρn

)
+ C

∣∣∣∣∣ d̂2
it − d2

it

bnrn(i)

∣∣∣∣∣
(
Atj − h0,n(ξi, ξj)

ρn

)∣∣∣∣∣∣∣∣
≤ max

i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=j

K
(
d2it
bn

)
rn(i)

(
Atj − h0,n(ξi, ξj)

ρn

)∣∣∣∣∣∣∣∣
+ C max

i,j,t,t 6=j

∣∣∣∣∣ d̂2
it − d2

it

bnrn(i)

∣∣∣∣∣max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t 6=j

Atj − h0,n(ξi, ξj)

ρn

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
≤2Mw+ Tn︸︷︷︸

a.s.−−→0

.

Mw < ∞ is defined in Lemma A.1. In Lemma A.2 we define Tn and show that the last factor in
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the last expression is almost surely bounded, hence

max
i,j

∣∣∣∣∣∣∣∣
1

(n− 1)ρnrn(i)

n∑
t=1
t6=j

K

(
d̂2
it

bn

)
(Atj − h0,n(ξi, ξj))

∣∣∣∣∣∣∣∣
≤ max

i,j

∣∣∣∣∣∣∣∣
1

(n− 1)ρnrn(i)

n∑
t=1
t6=j

K

(
d2
it

bn

)
(Atj − h0,n(ξt, ξj) + h0,n(ξt, ξj)− h0,n(ξi, ξj))

∣∣∣∣∣∣∣∣
+ C(2Mw + Tn)

1

bnrn

(
max
i,j

∣∣∣d̂2
ij − d2

ij

∣∣∣)

≤ max
i,j

∣∣∣∣∣∣∣∣
∑n
t=1
t6=j

K
(
d2it
bn

)
(Atj − h0,n(ξt, ξj))

(n− 1)ρnrn(i)

∣∣∣∣∣∣∣∣+ max
i,j

∣∣∣∣∣∣∣∣
∑n
t=1
t 6=j

K
(
d2it
bn

)
(h0,n(ξt, ξj)− h0,n(ξi, ξj))

(n− 1)ρnrn(i)

∣∣∣∣∣∣∣∣
+ C(2Mw + Tn)

1

bnrn

(
max
i,j

∣∣∣d̂2
ij − d2

ij

∣∣∣) .
where Tn

a.s.−−→ 0. We complete the proof by showing that the three terms go to zero in probability

in Lemma A.3, Lemma A.4 and Lemma A.5.

Lemma A.1. Under the assumptions of Theorem 1, for any ε > 0:

∞∑
n=3

P


∣∣∣∣∣∣∣∣max
i,j

∣∣∣∣∣∣∣∣1−
E
(
K
(
d2it
bn

)
|ξi
)

1
n−1

∑n
t=1
t 6=j

K
(
d̂2it
bn

)
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ > ε


= O

( ∞∑
n=3

n2 exp (−nrnCε) +

∞∑
n=3

n4 exp
(
−nb2nr2

nρ
2
nCε

))
= O(1).

hence

max
i,j

∣∣∣∣∣∣∣∣1−
E
(
K
(
d2it
bn

)
|ξi
)

1
n−1

∑n
t=1
t 6=j

K
(
d̂2it
bn

)
∣∣∣∣∣∣∣∣
a.s.−−→ 0.

Proof. Take any ε > 0. We start by using a union bound:

P

max
i,j

∣∣∣∣∣∣∣∣1−
E
(
K
(
d2it
bn

)
|ξi
)

1
n−1

∑n
t=1
t 6=j

K
(
d̂2it
bn

)
∣∣∣∣∣∣∣∣ > ε

 ≤ n2P


∣∣∣∣∣∣∣∣1−

E
(
K
(
d2it
bn

)
|ξi, ξj

)
1

n−1

∑n
t=1
t6=j

K
(
d̂2it
bn

)
∣∣∣∣∣∣∣∣ > ε
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Let rn(i) = E
(
K
(
d2it
bn

)
|ξi
)
≥ rn ≥ 0 and r̂n(i) = 1

n−1

∑n
t=1
t 6=j

K
(
d̂2it
bn

)
. We have:

P

(∣∣∣∣1− rn(i)

r̂n(i)

∣∣∣∣ > ε

)
≤ P (|r̂n(i)− rn(i)| > ε|r̂n(i)|)

≤ P
(
|r̂n(i)− rn(i)| > ε|r̂n(i)| and |r̂n(i)| ≥ rn(i)

2

)
+ P

(
|r̂n(i)− rn(i)| > ε|r̂n(i)| and |r̂n(i)| < rn(i)

2

)
≤ P

(
|r̂n(i)− rn(i)| > ε

rn(i)

2

)
+ P

(
|r̂n(i)| < rn(i)

2

)
≤ P

(∣∣∣∣ r̂n(i)

rn(i)
− 1

∣∣∣∣ > ε

2

)
+ P

(∣∣∣∣ r̂n(i)

rn(i)
− 1

∣∣∣∣ > 1

2

)

where the last line follows from:

P

(
|r̂n(i)| < rn(i)

2

)
≤ P

(
r̂n(i) <

rn(i)

2

)
= P

(
r̂n(i)− rn(i) < −rn(i)

2

)
= P

(
rn(i)− r̂n(i) >

rn(i)

2

)
≤ P

(
|rn(i)− r̂n(i)| > rn(i)

2

)
≤ P

(∣∣∣∣ r̂n(i)

rn(i)
− 1

∣∣∣∣ > 1

2

)
.

We use the above derivation and the law of iterated expectations to get am upper bound of the

form:

P

max
i,j

∣∣∣∣∣∣∣∣1−
E
(
K
(
d2it
bn

)
|ξi
)

1
n−1

∑n
t=1
t 6=j

K
(
d̂2it
bn

)
∣∣∣∣∣∣∣∣ > ε

 ≤ n2E

P

∣∣∣∣∣∣∣∣

1

n− 1

n∑
t=1
t6=j

K
(
d̂2it
bn

)
rn(i)

− 1

∣∣∣∣∣∣∣∣ >
ε

2

∣∣∣∣∣∣∣∣ ξi, ξj



+ n2E

P

∣∣∣∣∣∣∣∣

1

n− 1

n∑
t=1
t6=j

K
(
d̂2it
bn

)
rn(i)

− 1

∣∣∣∣∣∣∣∣ >
1

2

∣∣∣∣∣∣∣∣ ξi, ξj

 .

The last two terms are identical, up to the value of ε. We use K(·) Lipschitz continuous and separate
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out the terms with t = i, j, so that the remaining average is of i.i.d terms that only depend on t.

n2E

P

∣∣∣∣∣∣∣∣

1

n− 1

n∑
t=1
t 6=j

K
(
d̂2it
bn

)
rn(i)

− 1

∣∣∣∣∣∣∣∣ >
ε

2

∣∣∣∣∣∣∣∣ ξi, ξj



≤ n2E

P

∣∣∣∣∣∣∣∣

1

n− 1

n∑
t=1
t 6=j

K
(
d2it
bn

)
rn(i)

− 1 +
1

n− 1

n∑
t=1
t6=j

C

∣∣∣∣∣ d̂2
it − d2

it

rn(i)bn

∣∣∣∣∣
∣∣∣∣∣∣∣∣ >

ε

2

∣∣∣∣∣∣∣∣ ξi, ξj



≤ n2E

P

∣∣∣∣∣∣∣∣

1

n− 1

n∑
t=1
t6=j

K
(
d2it
bn

)
rn(i)

− 1

∣∣∣∣∣∣∣∣ >
ε

4

∣∣∣∣∣∣∣∣ ξi, ξj



+ n2E

(
P

(∣∣∣∣∣max
i,t

(
d̂2
it − d2

it

rn(i)bn

)∣∣∣∣∣ > ε

4C

∣∣∣∣∣ ξi, ξj
))

≤ n2E

P

∣∣∣∣∣∣∣∣

1

n− 2

n∑
t=1
t 6=i,j

K
(
d2it
bn

)
rn(i)

− 1

∣∣∣∣∣∣∣∣ >
ε

4
− 2C

(n− 2)rn

∣∣∣∣∣∣∣∣ ξi, ξj

+O

(
n4 exp

(
−nb2nr2

nρ
2
nCε

))

where the last rate follows from Lemma A.5. For the first term we apply Bernstein’s inequality:

conditional on ξi, ξj ,
1

rn(i)K
(
d2it
bn

)
− 1 are i.i.d., mean zero, bounded by 2C

rn
, with variance O

(
1
rn

)
:

V ar

K
(
d2it
bn

)
rn(i)

− 1

∣∣∣∣∣∣ ξi
 ≤ E

((
K
(
d2it
bn

))2
∣∣∣∣ ξi)

rn(i)2
≤

CE
(
K
(
d2it
bn

)∣∣∣ ξi)(
E
(
K
(
d2it
bn

)∣∣∣ ξi))2

=
C

E
(
K
(
d2it
bn

)∣∣∣ ξi) ≤
C

rn
= O

(
1

rn

)
,

hence for any ε > 0:

n2P


∣∣∣∣∣∣∣∣

1

n− 2

n∑
t=1
t6=i,j

K
(
d2it
bn

)
rn(i)

− 1

∣∣∣∣∣∣∣∣ >
ε

4
− 2C

(n− 2)rn

∣∣∣∣∣∣∣∣ ξi, ξj


≤ 2n2 exp

− (n− 2)
(
ε
4 −

2C
(n−2)rn

)2

2
(
O
(

1
rn

)
+ 1

3
C
rn

(
ε
4 −

2C
(n−2)rn

))


≤ n2 exp (−nrnCε) .

where Cε > 0 is some constant dependent on ε. Note that the final value does not depend on the

choice of ξi, ξj , hence it does not change when we take expectation over ξi, ξj .
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It remains to show that the following expression:

∞∑
n=3

P

max
i,j

∣∣∣∣∣∣∣∣1−
E
(
K
(
d2it
bn

)
|ξi
)

1
n−1

∑n
t=1
t6=j

K
(
d̂2it
bn

)
∣∣∣∣∣∣∣∣ > ε


≤ O

( ∞∑
n=3

n2 exp (−nrnCε) +

∞∑
n=3

n4 exp
(
−nb2nr2

nρ
2
nCε

))

is bounded. The last sum is bounded by arguments shown in Lemma A.5. For the first sum we

have:

∞∑
n=3

n4e−nrnCε =

∞∑
n=3

n2e−nrnCε log(n) 1
log(n) =

∞∑
n=3

n2
(
elog(n)

)−Cε nrn
log(n)

=

∞∑
n=3

n2−Cε nrn
log(n) .

It remains to show nrn
log(n) −→∞. We start by showing rn ≥ Cb

1
2α
n :

rn = inf
ξi
rn(i) = inf

ξi
E

(
K

(
d2
it

bn

)∣∣∣∣ ξi) ≥ C1 inf
ξi
P

(
d2
it

bn
≤ C2

∣∣∣∣ ξi)
≥ C1 inf

ξi
P

(
Es

(
(w0 (ξi, ξs)− w0 (ξt, ξs))

2
∣∣∣ ξi, ξt) ≤ C2

M2
w

bn

∣∣∣∣ ξi)
≥ C1 inf

ξi
P

(
ξt ∈ N

(
ξi,

√
C2

M2
w

bn

)∣∣∣∣∣ ξi
)

= C1ω

(√
C2

M2
w

bn

)
≥ Cb

1
2α
n .

In the first inequality we use the part of Assumption 1.3 which says the kernel is separated from

0 for input values sufficiently close to 0. The second inequality comes from:

d2
ij = Et

(
(Es (w0 (ξt, ξs) (w0 (ξi, ξs)− w0 (ξj , ξs))| ξi, ξj , ξt))2

∣∣∣ ξi, ξj)
≤ Et

(
Es

(
w2 (ξt, ξs) (w0 (ξi, ξs)− w0 (ξj , ξs))

2
∣∣∣ ξi, ξj , ξt)∣∣∣ ξi, ξj)

≤M2
wEs

(
(w0 (ξi, ξs)− w0 (ξj , ξs))

2
∣∣∣ ξi, ξj) ≤M4

w <∞

where the first inequality is due to Jensen’s inequality and the second follows from the fact that

for any ξi, ξj ∈ Supp(ξ) w0(ξi, ξj) is bounded; we denote the bound by Mw < ∞. To see this,

recall that ρnw0(u, v) = h0,n(u, v) ∈ [0, 1], hence we have w0(u, v) ∈
[
0, 1

ρn

]
for all n ∈ N. Then

also w0(u, v) ∈
⋂∞
n=1

[
0, 1

ρn

]
⊂
[
0, 1

supn ρn

]
. supn ρn exists since ρn, which can be interpreted as

the marginal probability of an edge, is bounded above by 1. Let Mw = 1
supn ρn

denote the upper

bound on the size of w0, i.e. for any ξi, ξj ∈ Supp(ξ) we have |w0(ξi, ξj)| ≤Mw.

The third inequality follows from the fact that if for some ξt we have supξs |w0(ξt, ξs) −

w0(ξi, ξs)| < δ, then Es

(
(w0 (ξi, ξs)− w0 (ξt, ξs))

2
∣∣∣ ξi, ξt) < δ2, i.e. ξt ∈ N (ξi, δ). For the final
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steps we use Assumption 1.2. The required divergence follows from Assumption 1.4:

nrn
log(n)

≥ C nb
1
2α
n

log(n)
−→∞.

Lemma A.2. Under the assumptions of Theorem 1, there exists a sequence of random variables

Tn such that

∞∑
n=3

P (|Tn| > ε) = O

( ∞∑
n=3

n2 exp (−nρnCε)

)
= O(1) hence Tn

a.s.−−→ 0

and

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=j

Atj − h0,n(ξi, ξj)

ρn

∣∣∣∣∣∣∣∣ ≤ 2Mw + Tn.

We add and subtract h0,n (ξt, ξj), use triangle inequality and the fact that w0 is bounded by

Mw.

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=j

Atj − h0,n(ξi, ξj)

ρn

∣∣∣∣∣∣∣∣
≤ max

i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=j

Atj − h0,n(ξt, ξj)

ρn

∣∣∣∣∣∣∣∣+ max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=j

h0,n(ξt, ξj)− h0,n(ξi, ξj)

ρn

∣∣∣∣∣∣∣∣
≤ max

i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=j

Atj − h0,n(ξt, ξj)

ρn

∣∣∣∣∣∣∣∣+ max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=j

w0(ξt, ξj)

∣∣∣∣∣∣∣∣+ max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=j

w0(ξi, ξj)

∣∣∣∣∣∣∣∣
≤ max
i,j,i 6=j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t 6=j

Atj − h0,n(ξt, ξj)

ρn

∣∣∣∣∣∣∣∣+ max
i

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=i

Ati − h0,n(ξt, ξi)

ρn

∣∣∣∣∣∣∣∣+ 2Mw = 2Mw + Tn.

In the second to last step we split the cases of i 6= j and i = j. We apply union bound and

Bernstein’s theorem to the averages. For the first one, we separate out the term with t = i (we

later condition on ξi, ξj , we want the remaining terms in the sum to be i.i.d. after conditioning).
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Atj−h0,n(ξt,ξj)
ρn

for t 6= i, j are, conditional on ξi, ξj , independent, zero mean:

E

(
Atj − h0,n(ξt, ξj)

ρn

∣∣∣∣ ξi, ξj) = E

(
E

(
Atj − h0,n(ξt, ξj)

ρn

∣∣∣∣ ξi, ξj , ξt)∣∣∣∣ ξi, ξj)
= E

(
E

(
Atj
ρn

∣∣∣∣ ξi, ξj , ξt)− h0,n(ξt, ξj)

ρn

∣∣∣∣ ξi, ξj) = E (w0(ξt, ξj)− w0(ξt, ξj)| ξi, ξj) = 0

and bounded by 1
ρn

: since A and h0,n take values in [0, 1], we have
∣∣∣Atj−h0,n(ξt,ξj)

ρn

∣∣∣ ≤ 1
ρn

. The

second moments are O
(

1
ρn

)
:

V ar

(
1

ρn
(Atj − h0,n(ξt, ξj))

∣∣∣∣ ξi, ξj) = E

((
1

ρn
(Atj − h0,n(ξt, ξj))

)2
∣∣∣∣∣ ξi, ξj

)

= E

(
1

ρ2
n

(h0,n(ξt, ξj) (1− h0,n(ξt, ξj)))

∣∣∣∣ ξi, ξj) = E

(
w0(ξt, ξj)

(
1

ρn
− w0(ξt, ξj)

)∣∣∣∣ ξj)
= O

(
1

ρn

)
+O(1) = O

(
1

ρn

)
.

For any ε > 0:

P

max
i,j,i 6=j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t 6=j

Atj − h0,n(ξt, ξj)

ρn

∣∣∣∣∣∣∣∣ > ε



≤ P

max
i,j,i 6=j

∣∣∣∣∣∣∣∣
1

n− 2

n∑
t=1
t6=i,j

Atj − h0,n(ξt, ξj)

ρn

∣∣∣∣∣∣∣∣ > ε− 1

(n− 2)ρn



≤ n(n− 1)E

P

∣∣∣∣∣∣∣∣

1

n− 2

n∑
t=1
t6=i,j

1

ρn
(Atj − h0,n(ξt, ξj))

∣∣∣∣∣∣∣∣ > ε− 1

(n− 2)ρn

∣∣∣∣∣∣∣∣ ξi, ξj



≤ 2n(n− 1) exp

− (n− 2)
(
ε− 1

(n−2)ρn

)2

2
(
O
(

1
ρn

)
+ 1

3
1
ρn

(
ε− 1

(n−2)ρn

))


≤ n2 exp (−nρnCε).
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Similarly,

P

max
i

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t 6=i

1

ρn
(Ati − h0,n(ξt, ξi))

∣∣∣∣∣∣∣∣ > ε



≤ nE

P

∣∣∣∣∣∣∣∣

1

n− 1

n∑
t=1
t 6=i

1

ρn
(Ati − h0,n(ξt, ξi))

∣∣∣∣∣∣∣∣ > ε

∣∣∣∣∣∣∣∣ ξi



≤ 2n exp

− (n− 1)ε2

2
(
O
(

1
ρn

)
+ 1

3
1
ρn
ε
)


≤ n exp (−nρnCε).

This is dominated by the previous term. Combining the above results, for any ε > 0:

∞∑
n=3

P

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t 6=j

Atj − h0,n(ξi, ξj)

ρn

∣∣∣∣∣∣∣∣ > 2Mw + ε

 ≤ ∞∑
n=3

P (|Tn| > ε)

≤ O

( ∞∑
n=3

n2 exp (−nρnCε)

)
<∞.

For the last claim, note that under Assumption 1.1 we have log(n)
ρnn

−→ 0. Then:

∞∑
n=3

n2e−nρnCε =

∞∑
n=3

n2e−nρnCε log(n) 1
log(n) =

∞∑
n=3

n2
(
elog(n)

)−Cε ρnn
log(n)

=

∞∑
n=3

n2−Cε ρnn
log(n) <∞

for any Cε > 0, since 2−Cε ρnn
log(n) −→ −∞. Hence Tn

a.s−−→ 0 and the term of interest is almost surely

bounded above by 2Mw.

Lemma A.3. Under the assumptions of Theorem 1, for any ε > 0:

∞∑
n=3

P

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t 6=j

K
(
d2it
bn

)
rn(i)

(
Atj − h0,n(ξt, ξj)

ρn

)∣∣∣∣∣∣∣∣ > ε

 ≤ O
( ∞∑
n=3

n2 exp (−nrnρnCε)

)
<∞

hence

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t 6=j

K
(
d2it
bn

)
rn(i)

(
Atj − h0,n(ξt, ξj)

ρn

)∣∣∣∣∣∣∣∣
a.s.−−→ 0.

57



Proof. We start by separating the cases when i 6= j and i = j:

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=j

K
(
d2it
bn

)
rn(i)

(
Atj − h0,n(ξt, ξj)

ρn

)∣∣∣∣∣∣∣∣ ≤ max
i,j,i 6=j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=j

K
(
d2it
bn

)
rn(i)

(
Atj − h0,n(ξt, ξj)

ρn

)∣∣∣∣∣∣∣∣
+ max

i

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t 6=i

K
(
d2it
bn

)
rn(i)

(
Ati − h0,n(ξt, ξi)

ρn

)∣∣∣∣∣∣∣∣ .

We split the first sum into the term with t = i and the rest the rest (which is i.i.d. over t), use

the triangle inequality and the fact that Aij and h0,n(ξi, ξj) take values in [0, 1] for any choice of

i, j while the kernel function is absolutely bounded.

max
i,j,i 6=j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=j

K
(
d2it
bn

)
rn(i)

(
Atj − h0,n(ξt, ξj)

ρn

)∣∣∣∣∣∣∣∣
≤ max
i,j,i 6=j

∣∣∣∣∣∣∣∣
n− 2

n− 1

1

n− 2

n∑
t=1
t6=i,j

K
(
d2it
bn

)
rn(i)

Atj − h0,n(ξt, ξj)

ρn

∣∣∣∣∣∣∣∣

+ max
i,j,i 6=j

1

n− 1


∣∣∣∣∣∣
K
(
d2ii
bn

)
rn(i)

∣∣∣∣∣∣︸ ︷︷ ︸
≤ C
rn

∣∣∣∣Aij − h0,n(ξi, ξj)

ρn

∣∣∣∣︸ ︷︷ ︸
≤ 1
ρn



≤ max
i,j,i 6=j

n− 2

n− 1

∣∣∣∣∣∣∣∣
1

n− 2

n∑
t=1
t 6=i,j

K
(
d2it
bn

)
rn(i)

Atj − h0,n(ξt, ξj)

ρn

∣∣∣∣∣∣∣∣+
C

(n− 1)rnρn
.

The expression inside the sum in the first term is bounded by C
rnρn

, hence after conditioning on

ξi, ξj we can apply the Bernstein’s inequality for bounded i.i.d. random variables. The conditional

expectation of that term is zero:

E

K
(
d2it
bn

)
rn(i)

Atj − h0,n(ξt, ξj)

ρn

∣∣∣∣∣∣ ξi, ξj
 = E

K
(
d2it
bn

)
rn(i)

(
1

ρn
E (Atj | ξi, ξj , ξt)− w0(ξt, ξj)

)∣∣∣∣∣∣ ξi, ξj


= E

K
(
d2it
bn

)
rn(i)

(w0(ξt, ξj)− w0(ξt, ξj))

∣∣∣∣∣∣ ξi, ξj
 = 0

where the first equality is due to the law of iterated expectations, the second uses the fact that

d2
it, rn(i) and h0,n(ξt, ξj) are not random after conditioning on ξi, ξj , ξt. Atj is independent of ξi,

hence E (Atj | ξi, ξj , ξt) = E (Atj | ξj , ξt) which by definition equals h0,n(ξt, ξj) = ρnw0(ξt, ξj). The
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conditional variance is O
(

1
rnρn

)
:

V ar

K
(
d2it
bn

)
rn(i)

Atj − h0,n(ξt, ξj)

ρn

∣∣∣∣∣∣ ξi, ξj


= E


K

(
d2it
bn

)
rn(i)

2

E

((
Atj − h0,n(ξt, ξj)

ρn

)2
∣∣∣∣∣ ξi, ξj , ξt

)∣∣∣∣∣∣∣ ξi, ξj


= E


K

(
d2it
bn

)
rn(i)

2(
w0(ξt, ξj)

(
1

ρn
− w0(ξt, ξj)

))∣∣∣∣∣∣∣ ξi, ξj


≤ Mw

ρn

E

((
K
(
d2it
bn

))2
∣∣∣∣ ξi)

rn(i)2︸ ︷︷ ︸
=O( 1

rn
)

= O

(
1

rnρn

)

where in the last line we use that the kernel function is bounded (K(·) ≤ C by Assumption 1.3)

and hence

E

((
K
(
d2it
bn

))2
∣∣∣∣ ξi)

rn(i)2
≤

CE
(
K
(
d2it
bn

)∣∣∣ ξi)(
E
(
K
(
d2it
bn

)∣∣∣ ξi))2 =
C

E
(
K
(
d2it
bn

)∣∣∣ ξi) ≤
C

rn
= O

(
1

rn

)
.

By union bound and Bernstein’s inequality, for any ε > 0 and n ≥ 3:

P

max
i,j,i 6=j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t 6=j

K
(
d2it
bn

)
rn(i)

(
Atj − h0,n(ξt, ξj)

ρn

)∣∣∣∣∣∣∣∣ > ε



≤ n(n− 1)E

P

∣∣∣∣∣∣∣∣

1

n− 2

n∑
t=1
t 6=i,j

K
(
d2it
bn

)
rn(i)

Atj − h0,n(ξt, ξj)

ρn

∣∣∣∣∣∣∣∣ > ε− C

(n− 2)ρnrn

∣∣∣∣∣∣∣∣ ξi, ξj



≤ 2n(n− 1) exp

 −(n− 2)
(
ε− C

(n−2)ρnrn

)2

2
(
O
(

1
rnρn

)
+ C

3rnρn

(
ε− C

(n−2)ρnrn

))


≤ n2 exp (−nrnρnCε)

for some Cε > 0. We can proceed in a very similar way for the case of i = j to get:

P

max
i

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=i

K
(
d2it
bn

)
rn(i)

Ati − h0,n(ξt, ξi)

ρn

∣∣∣∣∣∣∣∣ > ε

 ≤ O (n exp (−nrnρnCε)) .

Combining all the terms gives the required result: for any ε > 0
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∞∑
n=3

P

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t 6=j

K
(
d2it
bn

)
rn(i)

(
Atj − h0,n(ξt, ξj)

ρn

)∣∣∣∣∣∣∣∣ > ε

 ≤ O
( ∞∑
n=3

n2 exp (−nrnρnCε)

)
<∞

under Assumption 1.1 and Assumption 1.4 which, by derivation similar to that at the end of the

proof of A.1, give:

nρnrn
log(n)

≥ Cnρnb
1
2α
n

log(n)
−→∞.

Hence

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t 6=j

K
(
d2it
bn

)
rn(i)

(
Atj − h0,n(ξt, ξj)

ρn

)∣∣∣∣∣∣∣∣
a.s.−−→ 0.

Lemma A.4. Under the assumptions of Theorem 1, for any ε > 0:

P


∣∣∣∣∣∣∣∣max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=j

K
(
d2it
bn

)
rn(i)

(
h0,n(ξt, ξj)− h0,n(ξi, ξj)

ρn

)∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ > ε


≤ O

(
n2 exp (−nrnCε)

)
+O

(
b

α2

(2α+1)2

n

)
−→ 0.

hence

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=j

K
(
d2it
bn

)
rn(i)

(
h0,n(ξt, ξj)− h0,n(ξi, ξj)

ρn

)∣∣∣∣∣∣∣∣
p−→ 0.

Proof. Intuitively, this result holds because as n increases
d2it
bn

becomes large, and hence K
(
d2it
bn

)
becomes zero, unless ξi and ξt are very close to each other in the sense that their h0,n(ξt, ξj) and

h0,n(ξi, ξj) are similar for all ξj .

We start by showing that whenever h0,n(ξt, ξj) and h0,n(ξi, ξj) are not close, their distance dit

will be separated away from zero.

We follow the ideas from Auerbach (2022)’s proof of Lemma 1 which shows that for any i, t, n

and any ε > 0 we can find a δ > 0 such that

√
E
(

(w0(ξi, ξj)− w0(ξt, ξj))
2
∣∣∣ ξi, ξt) ≥ ε =⇒ dit =
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√
E
(

(ϕ(ξi, ξj)− ϕ(ξt, ξj))
2
∣∣∣ ξi, ξt) ≥ δ.

Our idea is to add an extra step at the beginning: if for given i, j, t there is a ν > 0 for which

we have |w0(ξt, ξj)− w0(ξi, ξj)| ≡
∣∣∣h0,n(ξt,ξj)−h0,n(ξi,ξj)

ρn

∣∣∣ > ν, then there exists an ε > 0 such

that

√
E
(

(w0(ξi, ξj)− w0(ξt, ξj))
2
∣∣∣ ξi, ξt) ≥ ε (which in turn implies dit ≥ δ). In other words,

|w0(ξt, ξj) − w0(ξi, ξj)| can be large only if dit is large, in which case the weight placed on that

term is small.

In our case, the issue is that in

√
E
(

(w0(ξi, ξj)− w0(ξt, ξj))
2
∣∣∣ ξi, ξt) we take an expectation

with respect to j, but the initial statement is given for a fixed j. To get around it, we replace the

fixed j with a random element of a neighbourhood of j, then take an expectation with respect

to an element of that neighbourhood, and use an upper bound which takes expectation over all

possible values, not just those in the neighbourhood of j.

Recall from Assumption 1.2 that N(ξj , δ) =
{
ξk : supξt |w0(ξt, ξk)− w0(ξt, ξj)| < δ

}
denotes

the neighbourhood of ξj of size δ. We fix i, j, t, k where k ∈ N
(
ξj ,

ν
3

)
. Then

1 (|w0(ξt, ξj)− w0(ξi, ξj)| > ν)

= 1 (|w0(ξt, ξj)− w0(ξt, ξk) + w0(ξt, ξk)− w0(ξi, ξk) + w0(ξi, ξk)− w0(ξi, ξj)| > ν)

≤ 1
(
|w0(ξt, ξj)− w0(ξt, ξk)| > ν

3

)
︸ ︷︷ ︸

=0

+1
(
|w0(ξt, ξk)− w0(ξi, ξk)| > ν

3

)

+ 1
(
|w0(ξi, ξk)− w0(ξi, ξj)| >

ν

3

)
︸ ︷︷ ︸

=0

= 1

(
(w0(ξt, ξk)− w0(ξi, ξk))

2
>
ν2

9

)
.

If the above holds for any fixed i, j, t and for any ξk ∈ N
(
ξj ,

ν
3

)
, it also holds if we take expectation

over ξk ∈ N
(
ξj ,

ν
3

)
. Recall from Assumption 1.2 that ω(δ) = infξj P (ξk ∈ N(ξj , δ)| ξj) and ω(δ) ≥
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(
δ
C

) 1
α for all δ > 0. We use E(X|A) = E(1AX)

P (A) .

1 (|w0(ξt, ξj)− w0(ξi, ξj)| > ν)

≤ 1
(
E
(

(w0(ξt, ξk)− w0(ξi, ξk))
2
∣∣∣ ξk ∈ N (ξj , ν

3

)
, ξi, ξj , ξt

)
>
ν2

9

)

= 1

E
(

(w0(ξt, ξk)− w0(ξi, ξk))
2
1
(
ξk ∈ N

(
ξj ,

ν
3

))∣∣∣ ξi, ξj , ξt)
P
(
ξk ∈ N

(
ξj ,

ν
3

)∣∣ ξj) >
ν2

9


≤ 1

(
E
(

(w0(ξt, ξk)− w0(ξi, ξk))
2
1
(
ξk ∈ N

(
ξj ,

ν

3

))∣∣∣ ξi, ξj , ξt) > ν2

9
ω
(ν

3

))
≤ 1

(
E
(

(w0(ξt, ξk)− w0(ξi, ξk))
2
∣∣∣ ξi, ξt) > ν2

9
ω
(ν

3

))
= 1

(√
E
(

(w0(ξt, ξk)− w0(ξi, ξk))
2
∣∣∣ ξi, ξt) > ν

3

√
ω
(ν

3

))

We set ε = ν
3

√
ω
(
ν
3

)
, which completes the argument.

Like Auerbach (2022)25, we assume there exist some α,C > 0 such that for any δ we have

ω(δ) ≥
(
δ
C

) 1
α (this is our Assumption 1.2). Then:

1 (|w0(ξt, ξj)− w0(ξi, ξj)| > ν) ≤ 1

(√
E
(

(w0(ξt, ξk)− w0(ξi, ξk))
2
∣∣∣ ξi, ξt) > ν

3

√( ν

3C

) 1
α

)

= 1

(
3C

1
2α+1

(
E
(

(w0(ξt, ξk)− w0(ξi, ξk))
2
∣∣∣ ξi, ξt)) α

2α+1

> ν

)
.

hence

|w0(ξt, ξj)− w0(ξi, ξj)| ≤ 3C
1

2α+1

(
E
(

(w0(ξt, ξk)− w0(ξi, ξk))
2
∣∣∣ ξi, ξt)) α

2α+1

.

Combining with Auerbach (2022)26 result:

√
E
(

(w0(ξt, ξk)− w0(ξi, ξk))
2
∣∣∣ ξi, ξt) ≤ 2C

1
4α+2 d

α
2α+1

it .

we get

|w0(ξt, ξj)− w0(ξi, ξj)| ≤ C̃d
2α2

(2α+1)2

it

25. One major difference is that Auerbach (2022) does not allow for sparsity in his model, in his case ρn = 1.
Hence we impose an assumption analogous to his to w0, not h0,n. If we were to define everything in terms of h0,n,
we would need Nn(ξj , δ) =

{
ξk : supξt |h0,n(ξt, ξk)− h0,n(ξt, ξj)| < δ

}
, ωn(δ) = infξj P ( ξk ∈ Nn(ξj , δ)| ξj) and

ωn(δ) ≥
(

δ
ρnC

) 1
α

.

26. This is Auerbach (2022) Lemma A1 restated in our notation. To account for the fact that Auerbach (2022)
does not allow for sparsity we replace their f , which is equivalent to our h0,n, with a w0 and their δ with our
equivalent term d.
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for C̃ = 3× 2
2α

2α+1 × C
3α+1

(2α+1)2 .

We can now return to the term of interest.

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=j

K
(
d2it
bn

)
rn(i)

(w0(ξt, ξj)− w0(ξi, ξj))

∣∣∣∣∣∣∣∣ ≤ max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=j

K
(
d2it
bn

)
rn(i)

C̃d
2α2

(2α+1)2

it

∣∣∣∣∣∣∣∣
≤ C̃

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=j

K
(
d2it
bn

)
rn(i)

d
2α2

(2α+1)2

it − E

K
(
d2it
bn

)
rn(i)

d
2α2

(2α+1)2

it

∣∣∣∣∣∣ ξi

∣∣∣∣∣∣∣∣ +

+ max
i

∣∣∣∣∣∣E
K

(
d2it
bn

)
rn(i)

d
2α2

(2α+1)2

it

∣∣∣∣∣∣ ξi
∣∣∣∣∣∣
 .

The first term goes to zero by the union bound and Bernstein’s inequality, where, conditionally on

ξi, ξj and after separating out the term with t = i, the terms inside the average are i.i.d., mean

zero, bounded by r−1
n CM

4α2

(2α+1)2

w = O
(
r−1
n

)
and have variance O

(
r−1
n

)
. For any ε > 0:

P

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t6=j

K
(
d2it
bn

)
rn(i)

d
2α2

(2α+1)2

it − E

K
(
d2it
bn

)
rn(i)

d
2α2

(2α+1)2

it

∣∣∣∣∣∣ ξi

∣∣∣∣∣∣∣∣ > ε



≤ 2n(n− 1) exp

−
(n− 2)

(
ε− CM

4α2

(2α+1)2
w

(n−2)rn

)2

2

(
O
(
r−1
n

)
+ CM

4α2

(2α+1)2
w

3rn

(
ε− CM

4α2

(2α+1)2
w

(n−2)rn

))


+ 2n exp

− (n− 1)ε2

2

(
O
(
r−1
n

)
+ CM

4α2

(2α+1)2
w ε
3rn

)


≤ n2 exp (−nrnCε) −→ 0.

The last convergence was shown at the end of the proof of Lemma A.1.

It remains to show that the last term goes to zero too. By Assumption 1.3, there exists a D ∈ R

such that ∀|u| > D : K(u) = 0. If dit 6= 0:
d2it
bn

= O
(

1
bn

)
−→ ∞, so eventually, as n −→ ∞,

d2it
bn

> D
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and K
(
d2it
bn

)
= 0 (and if dit = 0 the whole term is identically equal to zero). We have:

max
i

∣∣∣∣∣∣E
K

(
d2it
bn

)
rn(i)

d
2α2

(2α+1)2

it

∣∣∣∣∣∣ ξi
∣∣∣∣∣∣ = max

i

∣∣∣∣∣∣E
K

(
d2it
bn

)
rn(i)

d
2α2

(2α+1)2

it 1

(
d2
it

bn
≤ D

)∣∣∣∣∣∣ ξi
∣∣∣∣∣∣

≤ max
i

∣∣∣∣∣∣(Dbn)
α2

(2α+1)2 E

K
(
d2it
bn

)
rn(i)

∣∣∣∣∣∣ ξi
∣∣∣∣∣∣

= max
i

∣∣∣∣∣∣∣∣(Dbn)
α2

(2α+1)2

E
(
K
(
d2it
bn

)∣∣∣ ξi)
rn(i)︸ ︷︷ ︸

=1

∣∣∣∣∣∣∣∣
≤ D

α2

(2α+1)2 b
α2

(2α+1)2

n = O

(
b

α2

(2α+1)2

n

)
−→ 0.

The last expression goes to zero by Assumption 1.4. Note however that under Assumption 1.4 the

rate of convergence to zero is too slow to ensure almost sure convergence of this term. This is the

reason why we only get uniform convergence in probability in Theorem 1 and convergence weakly

in probability in Theorem 3.

Lemma A.5. Under the assumptions of Theorem 1, for any ε > 0:

∞∑
n=3

P

(
1

bnrn
max
i,j

∣∣∣d̂2
ij − d2

ij

∣∣∣ > ε

)
= O

( ∞∑
n=3

n2 exp
(
−nb2nr2

nρ
2
nCε

))
= O(1)

hence

1

bnrn
max
i,j

∣∣∣d̂2
ij − d2

ij

∣∣∣ a.s.−−→ 0.

Proof. We follow the same steps as in Lemma B1 in Auerbach (2022). By definition:

d̂ij =

√√√√ 1

n

n∑
t=1

(
1

n

n∑
s=1

Ats
ρn

(
Ais −Ajs

ρn

))2

d̃ij =

√√√√ 1

n

n∑
t=1

(ϕ(ξi, ξt)− ϕ(ξj , ξt))
2

dij =

√
Et

(
(ϕ(ξi, ξt)− ϕ(ξj , ξt))

2
∣∣∣ ξi, ξj).
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Take any ε > 0. We have:

P

(
1

bnrn
max
i,j

∣∣∣d̂2
ij − d2

ij

∣∣∣ > ε

)
= P

(
max
i,j

∣∣∣d̂2
ij − d2

ij

∣∣∣ > εbnrn

)
= P

(
max
i,j

∣∣∣d̂2
ij − d̃2

ij + d̃2
ij − d2

ij

∣∣∣ > εbnrn

)
≤ P

(
max
i,j

∣∣∣d̂2
ij − d̃2

ij

∣∣∣ > εbnrn
2

)
+ P

(
max
i,j

∣∣∣d̃2
ij − d2

ij

∣∣∣ > εbnrn
2

)
(35)

where the last inequality follows from the fact that |a+ b| > ε implies |a| > ε
2 or |b| > ε

2 and hence

P (|a+ b| > ε) ≤ P (|a| > ε
2 ) + P (|b| > ε

2 ).

For the first term in (35), we plug in the definitions, then use a2 − b2 = (a− b)(a+ b) and the

fact that the second bracket approaches a limit bounded by 4M2
w:

P

(
max
i,j

∣∣∣d̂2
ij − d̃2

ij

∣∣∣ > εbnrn
2

)

= P

max
i,j

∣∣∣∣∣∣ 1n
n∑
t=1

( 1

n

n∑
s=1

Ats
ρn

(
Ais
ρn
− Ajs

ρn

))2

− (ϕ(ξi, ξt)− ϕ(ξj , ξt))
2

∣∣∣∣∣∣ > εbnrn
2


= P

(
max
i,j

∣∣∣∣∣ 1n
n∑
t=1

(
1

n

n∑
s=1

AtsAis
ρ2
n

− ϕ(ξi, ξt) + ϕ(ξj , ξt)−
1

n

n∑
s=1

AtsAjs
ρ2
n

)
×

×

(
1

n

n∑
s=1

AtsAis
ρ2
n

+ ϕ(ξi, ξt)− ϕ(ξj , ξt)−
1

n

n∑
s=1

AtsAjs
ρ2
n

)∣∣∣∣∣ > εbnrn
2

)

≤ P

(
max
i,j

∣∣∣∣∣ 1n
n∑
t=1

(
1

n

n∑
s=1

AtsAis
ρ2
n

− ϕ(ξi, ξt) + ϕ(ξj , ξt)−
1

n

n∑
s=1

AtsAjs
ρ2
n

)∣∣∣∣∣ > εbnrn
16M2

w

)
+

+ P

(
max
i,j,t

∣∣∣∣∣ 1n
n∑
s=1

AtsAis
ρ2
n

+ ϕ(ξi, ξt)− ϕ(ξj , ξt)−
1

n

n∑
s=1

AtsAjs
ρ2
n

∣∣∣∣∣ > 8M2
w

)

where the last equality follows from the fact that ab > ε implies b ≥ M or a > ε
M . For the first

term, we again note that |a+ b| > ε implies |a| > ε
2 or |b| > ε

2 , we split the expression into a part
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with terms that only depend on i and a part with terms that only depend on j. We then get:

P

(
max
i,j

∣∣∣∣∣ 1n
n∑
t=1

(
1

n

n∑
s=1

AtsAis
ρ2
n

− ϕ(ξi, ξt) + ϕ(ξj , ξt)−
1

n

n∑
s=1

AtsAjs
ρ2
n

)∣∣∣∣∣ > εbnrn
16M2

w

)

≤ 2P

(
max
i

∣∣∣∣∣ 1n
n∑
t=1

(
1

n

n∑
s=1

AtsAis
ρ2
n

− ϕ(ξi, ξt)

)∣∣∣∣∣ > εbnrn
32M2

w

)

≤ 2nE

(
P

(
max
t,t6=i

∣∣∣∣∣ 1

n− 1

n∑
s=1

AtsAis
ρ2
n

− ϕ(ξi, ξt)

∣∣∣∣∣ > εbnrn
32M2

w

− 1

(n− 1)ρ2
n

∣∣∣∣∣ ξi
))

≤ 2n(n− 1)E

P

∣∣∣∣∣∣∣∣

1

n− 2

n∑
s=1
s6=i,t

AtsAis
ρ2
n

− ϕ(ξi, ξt)

∣∣∣∣∣∣∣∣ >
εbnrn
32M2

w

− 1

(n− 1)ρ2
n

− 2

(n− 2)ρ2
n

∣∣∣∣∣∣∣∣ ξi, ξt



≤ 4n(n− 1) exp

 −(n− 2)
(
εbnrn
32M2

w
− 1

(n−1)ρ2n
− 2

(n−2)ρ2n

)2

2
(
C
ρ2n

+ 1
3

1
ρ2n

(
εbnrn
32M2

w
− 1

(n−1)ρ2n
− 2

(n−2)ρ2n

))


≤ n2 exp
(
−nb2nr2

nρ
2
nCε

)
where the second inequality follows from the union bound applied to maxi and the fact that

1
n

∑n
t=1 xt ≤

n−1
n

1
n−1

∑n
t=1
t 6=i

maxt,t6=i xt + 1
nxi = n−1

n

(
maxt,t6=i xt + 1

n−1xi

)
. In this case xi =

1
n

∑n
s=1

A2
is

ρ2n
− ϕ(ξi, ξi) and |xi| ≤ 1

ρ2n
(since A and ρ2

nϕ both belong to [0, 1]). We also use the

fact that n−1
n |a| > ε implies |a| > ε. Next, notice that

∣∣∣a± 1
(n−1)ρ2n

∣∣∣ > ε implies that either

|a| ≥ a > ε ± 1
(n−1)ρ2n

> ε − 1
(n−1)ρ2n

or |a| ≥ −a > ε ± 1
(n−1)ρ2n

> ε − 1
(n−1)ρ2n

, so in either

case we get |a| > ε − 1
(n−1)ρ2n

. For the third inequality, we again apply the union bound, this

time over t 6= i, and separate out the terms with s = i or s = t, similarly to the previous

step. The final inequality follows from Bernstein’s inequality with
∣∣∣AtsAisρ2n

− ϕ(ξi, ξt)
∣∣∣ ≤ 1

ρ2n
and

V ar
(
AtsAis
ρ2n

− ϕ(ξi, ξt)
)

= E
(
ϕ (ξi, ξt)

(
1
ρ2n
− ϕ (ξi, ξt)

))
≤ M2

w

ρ2n
.

For the second term, take any 0 < ε < 2M2
w and use similar arguments.

P

(
max
i,j,t

∣∣∣∣∣ 1n
n∑
s=1

AtsAis
ρ2
n

+ ϕ(ξi, ξt)− ϕ(ξj , ξt)−
1

n

n∑
s=1

AtsAjs
ρ2
n

∣∣∣∣∣ > 8M2
w

)

≤ 2P

(
max
i,t

∣∣∣∣∣ 1n
n∑
s=1

AtsAis
ρ2
n

+ ϕ(ξi, ξt)

∣∣∣∣∣ > 4M2
w

)

≤ 2

(
P

(
max
i,t

∣∣∣∣∣ 1n
n∑
s=1

AtsAis
ρ2
n

− ϕ(ξi, ξt)

∣∣∣∣∣ > ε

)
︸ ︷︷ ︸
≤2n2 exp

 −(n−2)

(
ε− 2

(n−1)ρ2n

)2

2

(
O

(
1
ρ2n

)
+1

3
1
ρ2n

(
ε− 2

(n−1)ρ2n

))


+P

(
max
i,t
|2ϕ(ξi, ξt)|︸ ︷︷ ︸
≤2M2

w

> 4M2
w − ε︸ ︷︷ ︸

>2M2
w

)
︸ ︷︷ ︸

=0

)

≤ n2 exp
(
−nρ2

nCε
)
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We show that the second term in (35) goes to zero almost surely by applying the union bound

and Bernstein’s inequality. We also use that, by definition, dii = d̃ii = 0.

P

(
max
i,j

∣∣∣d̃2
ij − d2

ij

∣∣∣ > εbnrn
2

)
≤ P

(
max
i,j,i 6=j

∣∣∣d̃2
ij − d2

ij

∣∣∣ > εbnrn
2

)
+ P

(
max
i

∣∣∣d̃2
ii − d2

ii

∣∣∣︸ ︷︷ ︸
=0

>
εbnrn

2

)
︸ ︷︷ ︸

=0

≤ n(n− 1)E

(
P

(∣∣∣d̃2
ij − d2

ij

∣∣∣ > εbnrn
2

∣∣∣∣ ξi, ξj))
= n(n− 1)E

(
P

(∣∣∣∣∣ 1n
n∑
t=1

(
(ϕ(ξi, ξt)− ϕ(ξj , ξt))

2 − E
(

(ϕ(ξi, ξt)− ϕ(ξj , ξt))
2
∣∣∣ ξi, ξj))

∣∣∣∣∣
>
εbnrn

2

∣∣∣∣ ξi, ξj))

≤ n(n− 1)E

P

∣∣∣∣∣∣∣∣

1

n− 2

n∑
t=1
t 6=i,j

(
(ϕ(ξi, ξt)− ϕ(ξj , ξt))

2

−E
(

(ϕ(ξi, ξt)− ϕ(ξj , ξt))
2
∣∣∣ ξi, ξj))∣∣∣ > εbnrn

2
− 2

(n− 2)ρ2
n

∣∣∣∣ ξi, ξj))

≤ 2n(n− 1) exp

−(n− 2)
(
εbnrn

2 − 2
(n−2)ρ2n

)2

2 +
2

(
εbnrn

2 − 2
(n−2)ρ2n

)
3

 ≤ n2 exp
(
−nb2nr2

nCε
)
.

The conclusion follows since

∞∑
n=3

P

(
1

bnrn
max
i,j

∣∣∣d̂2
ij − d2

ij

∣∣∣ > ε

)
= O

( ∞∑
n=3

n2 exp
(
−nb2nr2

nρ
2
nCε

))
= O(1)

The last term is bounded for any Cε > 0 because under Assumption 1.4 log(n)
nb2nr

2
nρ

2
n
−→ 0.
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A.2 Proofs of consistency of the bootstrap procedure

Proof of Theorem 2. We start by constructing a particular coupling in Γ (A∗, H). Let γ̃ be a par-

ticular joint distribution over F̂n and F0, the details of which we specify later in the proof. We

use γ̃ to construct a coupling between A∗ and H: we draw pairs {(ξ∗i , ξi)}
n
i=1

i.i.d.∼ γ̃. We also

independently draw {ηij}ni<j
i.i.d.∼ U[0, 1] and set η∗ij = ηij . We denote (A∗, H) ∼ ν̃ and note that

this construction gives correct marginal distributions of A∗ and H, hence:

W p
p (A∗, H) ≤

∫
dpGM (A∗, H) dν̃ ≤

∫ ((
n

2

)−1 ‖A∗ −H‖1,1
2

)p
dν̃

≤
∫ (

n

2

)−1∑
i<j

∣∣A∗ij −Hij

∣∣p dν̃ =

(
n

2

)−1∑
i<j

∫ ∣∣A∗ij −Hij

∣∣ dν̃ =

∫ ∣∣A∗ij −Hij

∣∣ dν̃
where the second inequality is due to the definition of dGM , the third follows from the definition

of 1
2 ‖A

∗ −H‖1,1 =
∑
i<j

∣∣A∗ij −Hij

∣∣ and Jensen’s inequality. The first equality is due to the fact

that both adjacency matrices are binary (1p = 1, 0p = 0) and the linearity of expectation. The

final equality follows from the identity of distribution over all pairs (i, j). Expanding the final term:

∫ ∣∣A∗ij −Hij

∣∣ dν̃ = ν̃
({
A∗ij 6= Hij

})
= ν̃

({
1
(
ĥn
(
ξ∗i , ξ

∗
j

)
≥ ηij

)
6= 1 (h0,n (ξi, ξj) ≥ ηij)

})
=

∫ 1

0

∫ ∫ ∣∣∣1(ĥn (ξ∗i , ξ∗j ) ≥ ηij)− 1 (h0,n (ξi, ξj) ≥ ηij)
∣∣∣ dγ̃ (ξ∗i , ξi) dγ̃

(
ξ∗j , ξj

)
dηij

=

∫ ∫ ∣∣∣ĥn (ξ∗i , ξ∗j )− h0,n (ξi, ξj)
∣∣∣ dγ̃ (ξ∗i , ξi) dγ̃

(
ξ∗j , ξj

)
≤
∫ ∫ ∣∣∣ĥn (ξ∗i , ξ∗j )− h0,n

(
ξ∗i , ξ

∗
j

)∣∣∣ dγ̃ (ξ∗i , ξi) dγ̃
(
ξ∗j , ξj

)
+

∫ ∫ ∣∣h0,n

(
ξ∗i , ξ

∗
j

)
− h0,n (ξi, ξj)

∣∣ dγ̃ (ξ∗i , ξi) dγ̃
(
ξ∗j , ξj

)
The fourth equality follows from the fact that the two indicator functions differ in value only

if ηij falls into the interval between h0,n (ξi, ξj) and ĥn
(
ξ∗i , ξ

∗
j

)
, which happens with probability∣∣∣ĥn (ξ∗i , ξ∗j )− h0,n (ξi, ξj)

∣∣∣. In the last line we use triangle inequality.
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We now look at the last two terms:

∫ ∫ ∣∣∣ĥn (ξ∗i , ξ∗j )− h0,n

(
ξ∗i , ξ

∗
j

)∣∣∣ dγ̃ (ξ∗i , ξi) dγ̃
(
ξ∗j , ξj

)
=

∫ ∫ ∣∣∣ĥn (ξ∗i , ξ∗j )− h0,n

(
ξ∗i , ξ

∗
j

)∣∣∣ dF̂n (ξ∗i ) dF̂n
(
ξ∗j
)

=
1

n2

n∑
i=1

n∑
j=1

∣∣∣ĥn (ξAi , ξAj )− h0,n

(
ξAi , ξ

A
j

)∣∣∣
≤ max

i,j

∣∣∣ĥn (ξAi , ξAj )− h0,n

(
ξAi , ξ

A
j

)∣∣∣ = op(ρn)

by Theorem 1, where ξAi ∼ F0 refers to the unobserved characteristics used in the formation of the

matrix A which A∗ is bootstrapped from.

For the other term we use Assumption 1.2, which says:

inf
ξj∈Supp(ξi)

P

(
ξk ∈

{
sup

ξt∈Supp(ξi)
|w0(ξt, ξk)− w0(ξt, ξj)| < δ

})
≥
(
δ

C

) 1
α

.

We have:

∫ ∫ ∣∣h0,n

(
ξ∗i , ξ

∗
j

)
− h0,n (ξi, ξj)

∣∣ dγ̃ (ξi, ξ
∗
i ) dγ̃

(
ξj , ξ

∗
j

)
≤ ρn

∫ ∫ ∣∣w0

(
ξ∗i , ξ

∗
j

)
− w0

(
ξi, ξ

∗
j

)∣∣ dγ̃ (ξi, ξ
∗
i ) dF̂n

(
ξ∗j
)

+ ρn

∫ ∫ ∣∣w0

(
ξi, ξ

∗
j

)
− w0 (ξi, ξj)

∣∣ dF0 (ξi) dγ̃
(
ξj , ξ

∗
j

)
≤ ρn

∫
sup

ξ∗j∈Supp(ξi)

∣∣w0

(
ξ∗i , ξ

∗
j

)
− w0

(
ξi, ξ

∗
j

)∣∣ dγ̃ (ξi, ξ
∗
i )

+ ρn

∫
sup

ξi∈Supp(ξi)

∣∣w0

(
ξi, ξ

∗
j

)
− w0 (ξi, ξj)

∣∣ dγ̃ (ξj , ξ∗j )
= 2ρn

∫
sup

ξi∈Supp(ξi)

∣∣w0

(
ξi, ξ

∗
j

)
− w0 (ξi, ξj)

∣∣ dγ̃ (ξj , ξ∗j )
The first inequality is due to the definition of h0,n = ρnw0 and triangle inequality. In the second

inequality we take a supremum over the repeated index and note that the support of F̂n is a subset

of the support of F0. As the terms no longer depend on ξ∗j and ξi respectively, we integrate over

their distributions. The resulting two terms are equal (note that w0 is symmetric).

Fix ε > 0. For every ξ∗j ∈ Supp(ξi) there exists a neighbourhood N(ξ∗j , ε) of measure at least(
ε
C

) 1
α such that for all ξj ∈ N(ξ∗j , ε): supξi∈Supp(ξi)

∣∣w0

(
ξi, ξ

∗
j

)
− w0 (ξi, ξj)

∣∣ < ε. Our task is to

show that there exists a coupling γ̃ which aligns ξ∗j with their corresponding neighbourhoods.
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To that end, define

dS(a, b) ≡ sup
ξi∈Supp(ξi)

|w0 (ξi, a)− w0 (ξi, b)| . (36)

dS is a pseudometric, i.e. it may fail positivity (the distance between two distinct points may be

zero) but it satisfies all other properties of a distance (in particular the triangle inequality).

Take K points {a1, . . . aK} ∈ Supp(ξi) which are at least ε apart: ∀1 ≤ i < j ≤ K :

dS(ai, aj) > ε. Form a ε
2 -neighbourhood around each ak.

These neighbourhoods are non-overlapping: suppose there was a b ∈ N
(
ai,

ε
2

)
and b ∈ N

(
aj ,

ε
2

)
for i 6= j. Then by triangle inequality: dS(ai, aj) ≤ dS(ai, b) + dS(aj , b) ≤ ε. But we have assumed

dS(ai, aj) > ε, a contradiction.

By Assumption 1.2 we know that each of these neighbourhoods has a measure at least
(
ε

2C

) 1
α .

It follows that:

1 ≥ Pb∼F0

(
b ∈

K⋃
i=1

N
(
ai,

ε

2

))
=

K⋃
i=1

Pb∼F0

(
b ∈ N

(
ai,

ε

2

))
≥ K

( ε

2C

) 1
α

or K ≤
(
ε

2C

)− 1
α <∞, so the set of {a1, . . . aK} has finite cardinality.

Take the largest K possible. Then for all b ∈ Supp(ξi)∃k ≤ K such that dS(b, ak) ≤ ε, or in

other words
⋃K
i=1N (ai, ε) is a finite cover of Supp(ξi). Hence we can assign each b ∈ Supp(ξi) to

one of the k ∈ {1, . . . ,K}: start with N
(
ak,

ε
2

)
for all k, then for each point not yet assigned to a

region add it to the region with (not necessarily unique) k which minimises the dS distance from

that point to ak. This way we form K disjoint regions, say {Nk}Kk=1, each of size at least
(
ε

2C

) 1
α

and such that whenever b1, b2 ∈ Nk ⊆ N (ak, ε) we have dS(b1, b2) ≤ dS(b1, ak) + dS(b2, ak) ≤ 2ε.

Now instead of ξi report k(ξi) such that ξi ∈ Nk(ξi). This means we are replacing F0 with an em-

pirical distribution function Gε which takes only K values, each with probability Pb∼F0
(b ∈ Nk) ≥(

ε
2C

) 1
α ; and we replace F̂n with an empirical distribution function Ĝε,n from Gε. We choose γ̃

to be any coupling of F0, F̂n consistent with the following: for y ∼ U[0, 1] set k (ξj) = G−1
ε (y),

k
(
ξ∗j
)

= Ĝ−1
ε,n(y).

Then:

∫
sup

ξi∈Supp(ξi)

∣∣w0

(
ξi, ξ

∗
j

)
− w0 (ξi, ξj)

∣∣ dγ̃ (ξj , ξ∗j ) ≤ 2ε+Mw

∫
1
(
k(ξj) 6= k(ξ∗j )

)
dγ̃
(
ξj , ξ

∗
j

)
For the first inequality we note that either ξj , ξ

∗
j fall in the same Nk and hence ds

(
ξ∗j , ξj

)
≤ 2ε, or

they come from different subsets of the domain, in which case their maximal possible distance is
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Mw. For the final term:

∫
1
(
k(ξj) 6= k(ξ∗j )

)
dγ̃
(
ξj , ξ

∗
j

)
≤
∫ ∣∣k(ξj)− k(ξ∗j )

∣∣ dγ̃ (ξj , ξ∗j )
=

∫ 1

0

∣∣∣G−1
ε (y)− Ĝ−1

ε,n(y)
∣∣∣ dy

=

∫ K

1

∣∣∣Gε(x)− Ĝε,n(x)
∣∣∣ dx

≤ K sup
x

∣∣∣Gε(x)− Ĝε,n(x)
∣∣∣ a.s.−−→ 0.

The first inequality is due to the fact that k ∈ N so if the terms are not equal their distance is at least

1. The next equality is by construction of γ̃, noting that y ∼ U[0, 1]. We then do a change of variable

(we switch from integrating the horizontal distance to the vertical distance between the plots of Gε

and Ĝε,n), noting that the plots can only differ on the domain x ∈ [1,K]. We use an upper bound

in terms of a supremum over x and conclude that the final expression goes to zero almost surely

by Glivenko-Cantelli Theorem. Hence for all n large enough
∫
1
(
k(ξj) 6= k(ξ∗j )

)
dγ̃
(
ξj , ξ

∗
j

)
≤ ε

Mw

with probability one.

Since ε was arbitrary, the overall expression is op(ρn), as required.
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For the proofs of the next section, in the appendix we split the argument into more steps and

provide intermediate results which lead to the conclusions in Theorem 3, Lemma 1 and Corollary 1.

The advantage of the additional steps is that they characterise moment conditions sufficient for

bootstrap consistency which could be verified for other classes of functions or alternative estimators

of the network-generating function. They have been left out of the main text to avoid introducing

more complicated notation and improve the readability.

We begin with a general result, not specific to U-statistics. Because the many levels of ran-

domness can get confusing very quickly, we have decided to tackle them one at a time: we firstly

characterise a class of non-random estimators and distributions for which we get weak convergence

of our statistic to the correct limit. We denote these generic non-random statistics and distribution

as e.g. hn, Fn and we can think of them as specific realisations of their random equivalents, e.g.

Fn can be the empirical distribution F̂n|ξ we get for a specific draw of ξ. In practice, the classes

of hn, Fn will often be wider and also contain elements which cannot be achieved as a specific

realisation of our random procedure. Once we have characterised the class which ensures weak

convergence to the desired limit, we show that, once we allow for randomness in ξ, the statistics

based on the random ĥn, F̂n belong that class with high probability, hence they converge weakly

to the same limit either almost surely or in probability.

Definition A.1. Set Cw,F,ρ. Let h denote a set of linking functions, let F denote a set of

distributions, and let (0, 1]N denote a set of sequences of densities {ρn}∞n=1, 0 < ρn ≤ 1. Let

(w,F, ρ) ∈ h ×F × (0, 1]N be a triple of a function w0, a distribution F , and a sparsity sequence

ρ. Let ξ ∼ F and ξ∗ ∼ Fn. For each (w,F, ρ) ∈ h×F× (0, 1]N let Cw,F,ρ be the set of non-random

sequences of pairs of functions and distributions {(hn, Fn)}∞n=1 characterised by a set of conditions

on convergence of moments of the form EFn

(
f
(
hn
ρn

(ξ∗), w(ξ∗)
))
−→ EF (f (w(ξ), w(ξ))) as n −→∞

for some class of functions f ∈ f. That is:

Cw,F,ρ =
{
{(hn, Fn)}∞n=1 : ∀n ∈ N,∀f ∈ f : (37)

(hn, Fn) ∈ h ×F and lim
n−→∞EFn

(
f

(
hn
ρn

(ξ∗), w(ξ∗)

))
= EF (f (w(ξ), w(ξ)))

}
.

We state the general version of the result27:

Theorem A.1. Let Cw0,F0,ρ be as defined in Definition A.1 and suppose that:

(i) the set Cw0,F0,ρ contains the sequence {(h0,n, F0)}∞n=1;

(ii) for any sequence {(hn, Fn)}∞n=1 in Cw0,F0,ρ, J̃n(t, hn, Fn) converges weakly to a common

27. The structure and the proof are strongly inspired by Theorem 1.2.1 of Politis et al. (1999).
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distribution J(t, w0, F0)28;

(iii) for any sequence {(hn, Fn)}∞n=1 in Cw0,F0,ρ:

lim
n−→∞Ehn,Fn

[(
fn (A∗ (hn (ξ∗) , η∗) , ρn, Fn)− f̃n(hn (ξ∗) , ρn, Fn)

)2
]

= 0 (38)

where A∗ (hn (ξ∗) , η∗) denotes an adjacency matrix A∗ based on a vector of observations of

ξ∗
i.i.d.∼ Fn, with Bernoulli probabilities determined by hn (ξ∗i ).

If the random sequence {(ĥn, F̂n)}∞n=1 belongs to Cw0,F0,ρ with probability one, i.e. ∀n ∈ N,∀f ∈

f : (ĥn, F̂n) ∈ h ×Fa.s. and EF̂n

(
f
(
ĥn
ρn

(ξ∗), w0(ξ∗)
))

a.s.−−→ EF0
(f (w0(ξ), w0(ξ))), then:

1. Jn(t, ĥn, F̂n)
a.s.⇒ J(t, w0, F0).

2. If J(t, w0, F0) is continuous in t at t = 1− α and strictly increasing at t = 1− α:

J−1
n (1− α, ĥn, F̂n)

a.s.−−→ J−1(1− α,w0, F0). (39)

3. If J(t, w0, F0) is continuous in t at t = 1−α and is strictly increasing at t = 1−α and if F0

doesn’t enter the function fn directly but only through a parameter θ29: fn(A(h0,n(ξ), η), ρn, θ),

then the (1− α) confidence interval for θ constructed as:

CIn

(
1− α,A, ĥn, F̂n

)
=
{
θ : J−1

n

(α
2
, ĥn, F̂n

)
≤ fn(A, ρn, θ) ≤ J−1

n

(
1− α

2
, ĥn, F̂n

)}
(40)

is asymptotically valid:

Ph0,n,F0

(
θ ∈ CIn

(
1− α,A, ĥn, F̂n

))
a.s.−−→ 1− α. (41)

4. If J (t, w0, F0) is continuous in t, then

sup
t

∣∣∣Jn (t, ĥn, F̂n)− J̃n (t, h0,n, F0)
∣∣∣ a.s.−−→ 0.

If the random sequence {(ĥn, F̂n)}∞n=1 satisfies the moment conditions for belonging to Cw0,F0,ρ in

probability: EF̂n

(
f
(
ĥn
ρn

(ξ∗), w0(ξ∗)
))

p−→ EF0
(f (w0(ξ), w0(ξ))), then conclusions 1.-4. above hold

with
p⇒ replacing

a.s.⇒ and
p−→ replacing

a.s.−−→.

28. This is weaker than Fn converges weakly to F0.
29. For example in equation (25) we have θ = Eh0,n,F0

(g(A(ι))).
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The above results follow straight from conveniently chosen assumptions, yet they are still useful

because they provides a set of sufficient conditions for the convergence of the bootstrap distribu-

tion to the correct limit, the correctness of bootstrap confidence intervals, and the consistency of

bootstrap.

Proof of Theorem A.1. We start from proving 1.

For any {(hn, Fn)}∞n=1 in Cw0,F0,ρ:

fn (A (hn (ξ∗) , η∗) , ρn, Fn) = f̃n (hn (ξ∗) , ρn, Fn)

+
(
fn (A (hn (ξ∗) , η∗) , ρn, Fn)− f̃n (hn (ξ∗) , ρn, Fn)

)

By assumption (ii), the distribution of f̃n (hn (ξ∗) , ρn, Fn) converges weakly to the desired

limit: J̃n(t, hn, Fn)
weakly−−−−→ J(t, w0, F0). By assumption (iii), the second term converges to 0 in

second mean, hence it is op(1) and does not affect the distribution limit30. For any sequence

{(hn, Fn)}∞n=1 ∈ Cw0,F0,ρ we have:

Jn(t, hn, Fn)
weakly−−−−→ J(t, w0, F0) i.e. d (Jn(t, hn, Fn), J(t, w0, F0)) −→ 0.

The random sequence
{

(ĥn, F̂n)
}∞
n=1

belongs to Cw0,F0,ρ with probability one, hence:

P
(

lim
n−→∞ d

(
Jn(t, ĥn, F̂n), J(t, w0, F0)

)
= 0
)

≥ P
(
{(ĥn, F̂n)}∞n=1 ∈ Cw0,F0,ρ and lim

n−→∞ d
(
Jn(t, ĥn, F̂n), J(t, w0, F0)

)
= 0
)

= P
(
{(ĥn, F̂n)}∞n=1 ∈ Cw0,F0,ρ

)
= 1,

that is: d
(
Jn(t, ĥn, F̂n), J(t, w0, F0)

)
a.s.−−→ 0.

For the case of convergence in probability, we use the following result:

Theorem (Billingsley (1995) Theorem 20.5 (ii)). A necessary and sufficient condition for Xn
p−→ X

is that each subsequence {Xn′} has a further subsequence {Xn′′} such that Xn′′
a.s.−−→ X.

Given that EF̂n

(
f
(
ĥn
ρn

(ξ∗), w0(ξ∗)
))

p−→ EF0
(f (w0(ξ), w0(ξ))), for any subsequence indexed

by n′ there is a further subsequence indexed by n′′ which satisfies EF̂n′′

(
f
(
ĥn′′
ρn′′

(ξ∗), w0(ξ∗)
))

a.s.−−→

30. By Theorem 25.4 in Billingsley (1995): Xn
d−→ X and Xn−Yn

p−→ 0, then Yn
d−→ X. Also, if FXn and FX denote

the distribution functions of random variables Xn and X, respectively, then Xn
d−→ X means FXn

weakly−−−−−→ FX .
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EF0
(f (w0(ξ), w0(ξ))). By what we have just shown, applied to Cw0,F0,ρ′′ , where ρ′′ is the subse-

quence of ρ indexed by n′′, d
(
Jn′′

(
t, ĥn′′ , F̂n′′

)
, J (t, w0, F0)

)
a.s.−−→ 0. Applying Theorem 20.5 (ii)

from Billingsley (1995) in the other direction, this means that d
(
Jn

(
t, ĥn, F̂n

)
, J (t, w0, F0)

)
p−→ 0.

Hence 1. holds.

The remaining conclusions follow by arguments identical to those in the proof of Theorem 1.2.1

in Politis et al. (1999). For 2. we use the following Lemma:

Lemma (Lemma 1.2.1 of Politis et al. (1999)). Let {Gn} be a sequence of distribution functions on

the real line converging weakly to a distribution function G (i.e. Gn(x) −→ G(x) for all continuity

points of G). Assume G is continuous and strictly increasing at y = G−1(1− α). Then,

G−1
n (1− α) = inf{x : Gn(x) ≥ 1− α} −→ G−1(1− α). (42)

Proof. See Politis et al. (1999) p.10.

Together with the conclusion from 1. that J̃n(t, hn, Fn)
weakly−−−−→ J(t, w0, F0) for all (hn, Fn) in

Cw0,F0,ρ, the lemma implies that J−1
n (1−α, hn, Fn) −→ J−1(1−α,w0, F0) for all (hn, Fn) in Cw0,F0,ρ.

Arguments identical to those in the proof of 1. show that if {(ĥn, F̂n)}∞n=1 belongs to Cw0,F0,ρ

with probability one, then J−1
n (1 − α, ĥn, F̂n)

a.s.−−→ J−1(1 − α,w0, F0) and if {(ĥn, F̂n)}∞n=1 satis-

fies the moment conditions for belonging to Cw0,F0,ρ in probability: EF̂n

(
f
(
ĥn
ρn

(ξ∗), w0(ξ∗)
))

p−→

EF0
(f (w0(ξ), w0(ξ))), then J−1

n (1− α, ĥn, F̂n)
p−→ J−1(1− α,w0, F0).

In order to show 3., we firstly prove the following Lemma:

Lemma A.6. Let {Gn} be a sequence of distribution functions on the real line converging weakly

to a distribution function G (i.e. Gn(x) −→ G(x) for all continuity points of G). Let xn be a real-

valued sequence converging to x (i.e. xn −→ x). Assume that G is continuous and strictly increasing

at x. Then,

Gn(xn) −→ G(x). (43)

Proof. Take any δ > 0. Since G is continuous at x, there exists ε > 0 such that x− ε and x+ ε are

continuity points of G and

G(x− ε)−G(x) ≥ −δ
2

G(x+ ε)−G(x) ≤ δ

2
.

Since xn −→ x, Gn(x − ε) −→ G(x − ε), Gn(x) −→ G(x) and Gn(x + ε) −→ G(x + ε), there exists an
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N ∈ N such that for all n ≥ N :

|xn − x| ≤ ε

|Gn(x− ε)−G(x− ε)| ≤ δ

2

|Gn(x)−G(x)| ≤ δ

2

|Gn(x+ ε)−G(x+ ε)| ≤ δ

2
.

Since Gn are weakly increasing for all n:

Gn(x− ε) ≤ Gn(x) ≤ Gn(x+ ε).

Hence for all n ≥ N :

−δ ≤ G(x− ε)−G(x)− δ

2
≤ Gn(x− ε)−G(x) ≤

≤ Gn(x)−G(x) ≤

≤ Gn(x+ ε)−G(x) ≤ G(x+ ε)−G(x) +
δ

2
≤ δ.

i.e. |Gn(xn)−G(x)| ≤ δ.

For 3, we start with any (hn, Fn) in Cw0,F0,ρ. We have:

Ph0,n,F0
(θ ∈ CIn (1− α,A, hn, Fn))

= Ph0,n,F0

(
J−1
n

(α
2
, hn, Fn

)
≤ fn(A, ρn, θ) ≤ J−1

n

(
1− α

2
, hn, Fn

))
= Ph0,n,F0

(
fn(A, ρn, θ) ≤ J−1

n

(
1− α

2
, hn, Fn

))
− Ph0,n,F0

(
fn(A, ρn, θ) < J−1

n

(α
2
, hn, Fn

))
= Jn

(
J−1
n

(
1− α

2
, hn, Fn

)
, h0,n, F0

)
− Jn

(
J−1
n

(α
2
, hn, Fn

)
, h0,n, F0

)
−→ J

(
J−1

(
1− α

2
, w0, F0

)
, w0, F0

)
− J

(
J−1

(α
2
, w0, F0

)
, w0, F0

)
= 1− α.

The convergence follows from Lemma A.6 used with 2. (for the convergence of the argument) and

Jn (t, h0,n, F0)
weakly−−−−→ J (t, w0, F0) (for the convergence in distribution). Arguments identical to

those in the proof of 1. show that if
{(
ĥn, F̂n

)}∞
n=1

belongs to Cw0,F0,ρ with probability one,

then Ph0,n,F0

(
θ ∈ CIn

(
1− α,A, ĥn, F̂n

))
a.s.−−→ 1− α. If instead

{(
ĥn, F̂n

)}∞
n=1

satisfies the mo-

ment conditions for belonging to Cw0,F0,ρ only in probability, that is: EF̂n

(
f
(
ĥn
ρn

(ξ∗), w0(ξ∗)
))

p−→
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EF0 (f (w0(ξ), w0(ξ))), then we have Ph0,n,F0

(
θ ∈ CIn

(
1− α,A, ĥn, F̂n

))
p−→ 1− α.

Finally, 4. follows from 1. and Polya’s Theorem:

Theorem (Polya’s Theorem, Satz I of Pólya (1920)). Let Xn, X be random variables with distri-

butions Fn(x) and F (x) respectively. If F is continuous

Xn
d−→ X ⇐⇒ sup

x
|Fn(x)− F (x)| −→ 0.

We can now provide more primitive conditions for the special class of fn for which f̃n is a

U-statistic.

Theorem A.2 (Consistency of bootstrap for U-statistics). Let ι be a set of m nodes and de-

note the adjacency matrix on the subgraph with nodes in ι and linking probabilities hn(., .) by

A(hn(ξ(ι)), η(ι)). Let g : {0, 1}(
m
2 ) −→ R be a symmetric function from a subgraph on m <∞ nodes

to the real line and let

fn(A(hn(ξ∗), η∗), ρn, Fn)

=

√
n(

n
m

)
ρ
τ(g)
n

∑
1≤ι1<ι2<···<ιm≤n

(g(A(hn(ξ∗(ι)), η∗(ι)))− Ehn,Fn(g(A(hn(ξ∗(ι)), η∗(ι))))) .

and g̃(h0,n(ξ(ι))) ≡ E(g(A(h0,n(ξ(ι)), η(ι)))|ξ(ι)). There exists a normalisation τ(g)31 and a func-

tion ˜̃g : Supp(ξ)m −→ R such that:

• g̃(h0,n(ξ(ι)))

ρ
τ(g)
n

= ˜̃g(w0(ξ(ι))) +O (ρn)

• EF0 (|˜̃g(w0(ξ(j)))|) > 0 for some j ∈Mm

• EF0

(
˜̃g2 (w0 (ξ(j)))

)
<∞ ∀j ∈Mm

• V arF0(EF0 (˜̃g(w0(ξ(ι)))|ξι1)) ≡ σ2
1 <∞

Suppose that:

σ2
1 > 0

n(
n
m

)
ρ
τ(g)
n

−→ 0.

31. For m = 2, if g(0) 6= 0 we set ρ
−τ(g)
n = 1, ˜̃g (w0 (ξi, ξj)) = g(0) and if g(0) = 0 but g(1) 6= 0 we set ρ

−τ(g)
n = 1

ρn

and ˜̃g (w0 (ξi, ξj)) = g(1)w0 (ξi, ξj). More generally, for m ≥ 2, ρ
−τ(g)
n = 1

ρkn
where k is the smallest number of ones

such that g(·) evaluated at a vector of k ones and
(m
2

)
− k zeros is non-zero.
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and let Cw0,F0,ρ be a set of sequences {(hn, Fn)}∞n=1 which satisfy:

1. EFn

((
1
ρn

(
hn(ξ∗i , ξ

∗
j )− h0,n(ξ∗i , ξ

∗
j )
))2
)
−→ 0.

2. EFn (f (ξ∗(ι))) −→ EF0 (f (ξ(ι))) for all f : Supp(ξ)k −→ R such that EF0 (|f (ξ(ι))|) < ∞ for

all ι ∈Mk, for any k ≤ 2m− 1.

Then {(ĥn, F̂ )}∞n=1 satisfies 1.-2. in probability and we get all conclusions of Theorem A.1 in

probability with J(t, w0, F0) = N(0,m2σ2
1).

Remark. The advantage of stating our condition as in 2. instead of directly showing that it holds

when Fn = F̂n because of SLLN for U-statistics is that it characterises a wider class of distributions

we could resample from. For example, when we adjust the resampling distribution for the purpose

of GMM by adding weights to different observations in a way that ensures the moment conditions

hold in the bootstrap world.

Proof of Theorem A.2. The theorem was stated for a general m <∞ but for simplicity of notation

we present the proof for the case of m = 2. The structure of the argument remains identical if we

use m > 2.

To show the existence of ˜̃g and τ(g) we start by analysing the form of g̃. Since g is a function

from {0, 1}(
m
2 ) it takes at most 2(m2 ) distinct values. Each of those values is taken with probability

that the input submatrix A(ι) matches a given pattern of 0s and 1s. Let Γ(A(ι)) denote the set (of

cardinality 2(m2 )) of all possible values A(ι) can take. Then:

g̃(h0,n(ξ(ι))) =
∑

γ∈Γ(A(ι))

g(γ)P (A(ι) = γ|ξ(ι)).

Conditional on ξ(ι), the elements of A(ι) are independent and P (Aij = 1|ξ) = h0,n(ξi, ξj) =

ρnw0(ξi, ξj) ∼ ρn while P (Aij = 0|ξ) = 1 − h0,n(ξi, ξj) = 1 − ρnw0(ξi, ξj) ∼ 1. The probability of

the event that the upper triangle of A(ι) consists of k ones and
(
m
2

)
− k zeros is proportional to

ρkn. The smallest k for which g(·) evaluated at an input γ with k ones and
(
m
2

)
− k zeros in the

upper triangle is non-zero is equal to the normalisation τ(g). By construction, all γs with fewer

ones have a coefficient g(γ) = 0. All γs with more ones happen with probability proportional to

ρln for l > τ(g), i.e. after a normalisation by ρ
−τ(g)
n are O (ρn) and go to zero.

The terms in the sum proportional to ρ
τ(g)
n are of the form:

g(γ)h0,n(ξι1 , ξι2) . . . h0,n(ξι3 , ξι4)︸ ︷︷ ︸
τ(g) terms

(1− h0,n(ξι5 , ξι6)) . . . (1− h0,n(ξι7 , ξι8)).
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After a normalisation by ρ
−τ(g)
n we get:

g(γ)w0(ξι1 , ξι2) . . . w0(ξι3 , ξι4)︸ ︷︷ ︸
τ(g) terms

(1− h0,n(ξι5 , ξι6)) . . . (1− h0,n(ξι7 , ξι8))

we keep the g(γ)w0(ξι1 , ξι2) . . . w0(ξι3 , ξι4) part in ˜̃g and note that the remainder of the previous

term is O (ρn).

To sum up, ˜̃g takes the form of a finite sum of non-zero constant (value of g at a specific

realisation γ) times a product of τ(g) terms of the form w0(ξιi , ξιj ).

The remaining terms in
g̃(h0,n(ξ(ι)))

ρ
τ(g)
n

− ˜̃g(w0(ξ(ι))) vanish at the rate O (ρn).

Since w0(ξi, ξj) is not identically equal to zero and there are non-zero coefficients g(γ) multi-

plying products of w0(ξιi , ξιj ) in ˜̃g, there exists j ∈Mm for which EF0
(|˜̃g(w0(ξ(j)))|) > 0.

Since w0(ξi, ξj) < Mw for all ξi, ξj we have

EF0

(
˜̃g2 (w0 (ξ(j)))

)
<

((m
2

)
τ(g)

)2(
max

γ∈Γ(A(ι))
g2(γ)

)
M2
w <∞

for all j ∈Mm (where the first constant says that there are
(
m
2

)
ones and zeros that determine the

value of A(ι), there are
((m2 )
τ(g)

)
ways to place τ(g) ones in them, and after squaring a sum of

((m2 )
τ(g)

)
terms we get

((m2 )
τ(g)

)2
terms, each bounded above by the remaining part of the expression). Finally,

since

V ar(E(Y |X)) = V ar(Y )− E(V ar(Y |X)) ≤ V ar(Y ) = E(Y 2)− E(Y )2 ≤ E(Y 2)

we also get that

σ2
1 ≡ V arF0(EF0 (˜̃g(w0(ξ(ι)))|ξι1)) < EF0

(
˜̃g2 (w0 (ξ(ι)))

)
<∞.

Having established the existence of ˜̃g and τ(g), we now check that the elements of Cw0,F0,ρ

satisfy condition (i)-(iii) of Theorem A.1.

The sequence {(hn, Fn)}∞n=1 = {(h0,n, F0)}∞n=1 satisfies the conditions and belongs to Cw0,F0,ρ

(sequences in 1. and 2. are constant and equal to the desired limit), hence (i) is satisfied.

79



To check condition (iii) we look at:

Ehn,Fn

((
fn(A∗ (hn (ξ∗) , η∗) , ρn, Fn)− f̃n(hn (ξ∗) , ρn, Fn)

)2
)

=
n((

n
2

)
ρ
τ(g)
n

)2

∑
i∗<j∗

∑
k∗<l∗

Ehn,Fn ((g(Ai∗j∗)− Ehn (g(Ai∗j∗)|ξ∗)) (g(Ak∗l∗)− Ehn (g(Ak∗l∗)|ξ∗)))

To simplify the above expression notice that most terms in the summation are zero. In particular,

consider different cases of overlap between the indices:

• if there is no overlap (i∗ 6= k∗, i∗ 6= l∗, j∗ 6= k∗, j∗ 6= l∗), by the independence assumption

the term inside the sum is:

Ehn,Fn ((g(Ai∗j∗)− Ehn (g(Ai∗j∗)|ξ∗)))2
= 02 = 0.

• If there is partial overlap (e.g. i∗ = k∗, j∗ 6= l∗, or any symmetric situation):

Ehn,Fn ((g(Ai∗j∗)− Ehn (g(Ai∗j∗)|ξ∗)) (g(Ai∗l∗)− Ehn (g(Ai∗l∗)|ξ∗)))

LIE
= Ehn,Fn (Ehn,Fn ((g(Ai∗j∗)− Ehn (g(Ai∗j∗)|ξ∗)) (g(Ai∗l∗)− Ehn (g(Ai∗l∗)|ξ∗)) |ξ∗i ))

indep
= Ehn,Fn

(
(Ehn,Fn ((g(Ai∗j∗)− Ehn (g(Ai∗j∗)|ξ∗)) |ξ∗i ))

2
)

LIE
= Ehn,Fn

(
(Ehn,Fn ((Ehn (g(Ai∗j∗)|ξ∗)− Ehn (g(Ai∗j∗)|ξ∗)) |ξ∗i ))

2
)

= 0.

• If there is full overlap (i∗ = k∗ and j∗ = l∗, or i∗ = l∗ and j∗ = k∗):

Ehn,Fn

(
(g(Ai∗j∗)− Ehn (g(Ai∗j∗)|ξ∗))2

)
≤ Ehn,Fn

(
g2(Ai∗j∗)

)
.

There are
(
n
2

)
terms of this final form in the sum.

Combining the three cases, we get:

Ehn,Fn

((
fn (A∗ (hn (ξ∗) , η∗) , ρn, Fn)− f̃n (hn (ξ∗) , ρn, Fn)

)2
)

≤
2Ehn,Fn

(
g2(Ai∗j∗)

)
(n− 1)ρ

2τ(g)
n

In an analogous way to how we have defined g̃ and the corresponding ˜̃g, we let g̃2 (h0,n (ξi, ξj)) ≡

Eh0,n

(
g2(Aij)|ξ

)
32, and we can find a function ˜̃g2(w0(ξi, ξj)) with

g̃2(h0,n(ξi,ξj))

ρ
τ(g)
n

= ˜̃g2(w0(ξi, ξj)) +

32. Comparing to the example given earlier:

E(g2(A1,2, A2,3)|ξ) ≡ g̃2(h0,n(ξ1, ξ2), h0,n(ξ2, ξ3))

= g2(0, 0)(1− h0,n(ξ1, ξ2))(1− h0,n(ξ2, ξ3)) + g2(0, 1)(1− h0,n(ξ1, ξ2))h0,n(ξ2, ξ3)

+ g2(1, 0)h0,n(ξ1, ξ2)(1− h0,n(ξ2, ξ3)) + g2(1, 1)h0,n(ξ1, ξ2)h0,n(ξ2, ξ3).
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O(ρn), 0 < EF0

(∣∣∣ ˜̃g2(w0(ξi, ξj))
∣∣∣) <∞ and 0 < EF0

(∣∣∣ ˜̃g2(w0(ξi, ξi))
∣∣∣) <∞. Then:

Ehn,Fn

(
ρ−τ(g)
n g2(Ai∗j∗)

)
= EFn

(
Ehn

(
ρ−τ(g)
n g2(Ai∗j∗)|ξ∗

))
= EFn

(
ρ−τ(g)
n g̃2

(
hn
(
ξ∗i , ξ

∗
j

)))
= EFn

(
ρ−τ(g)
n g̃2

(
h0,n

(
ξ∗i , ξ

∗
j

))
+ ρ−τ(g)+1

n g̃2
′ (
h̃n
(
ξ∗i , ξ

∗
j

)) 1

ρn

(
hn
(
ξ∗i , ξ

∗
j

)
− h0,n

(
ξ∗i , ξ

∗
j

)))
≤ EFn

(
ρ−τ(g)
n g̃2

(
h0,n

(
ξ∗i , ξ

∗
j

)))
+ ρ−τ(g)+1

n sup
h

∣∣∣g̃2
′

(h)
∣∣∣︸ ︷︷ ︸

<∞

EFn

(
1

ρn

(
hn(ξ∗i , ξ

∗
j )− h0,n(ξ∗i , ξ

∗
j )
))

︸ ︷︷ ︸
=o(1)

= EFn

(
˜̃
g2
(
w0

(
ξ∗i , ξ

∗
j

)))
+O (ρn) + o(1)

a.s.−−→ EF0

(
˜̃
g2(w0(ξi, ξj))

)
<∞.

Note that since the leading term of g̃2(h0,n) is proportional to the τ(g)th power of h0,n, the leading

term of g̃2
′

(h0,n) has a h0,n to the power τ(g)− 1. Given the form of g̃2
′

(h0,n), which is a sum of

finitely many terms of the form of a bounded constant times bounded powers of h0,n, the whole

derivative is bounded. It follows that:

Ehn,Fn

((
fn (A∗ (hn (ξ∗) , η∗) , ρn, Fn)− f̃n (hn (ξ∗) , ρn, Fn)

)2
)
≤ O

(
1

nρ
τ(g)
n

)
= o (1) .

Hence (iii) holds.

Checking (ii) is a bit more involved. We start with a Hoeffding’s (martingale) decomposition33

of f̃n (hn (ξ∗) , ρn, Fn) for any {(hn, Fn)}∞n=1 in Cw0,F0,ρ:

f̃n (hn (ξ∗) , ρn, Fn) =

√
n(

n
2

)
ρ
τ(g)
n

∑
i<j

g̃(hn(ξ∗i , ξ
∗
j ))− EFn

(
g̃(hn(ξ∗i , ξ

∗
j ))
)

=
2

√
nρ

τ(g)
n

n∑
i=1

EFn
(
g̃(hn(ξ∗i , ξ

∗
j ))|ξ∗i

)
− EFn

(
EFn

(
g̃(hn(ξ∗i , ξ

∗
j ))|ξ∗i

))
+

√
n(

n
2

)
ρ
τ(g)
n

∑
i<j

(
g̃(hn(ξ∗i , ξ

∗
j ))− EFn

(
g̃(hn(ξ∗i , ξ

∗
j ))|ξ∗i

)
− EFn

(
g̃(hn(ξ∗i , ξ

∗
j ))|ξ∗j

)
+ EFn

(
g̃(hn(ξ∗i , ξ

∗
j ))
) )

≡ Ũn(hn, Fn) + r̃n(hn, Fn).

We firstly focus on Ũn(hn, Fn), which is a (rescaled) average of i.i.d. terms. We add and subtract

This example illustrates why g̃2(h0,n(ξ1, ξ2), h0,n(ξ2, ξ3)) is proportional to ρ
τ(g)
n , not to ρ

2τ(g)
n .

33. For more details see Chapter 5 of Serfling (2009), specifically section 5.1.5.
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terms that swap hn for h0,n and Fn for F0:

Ũn(hn, Fn) =
2

√
nρ

τ(g)
n

n∑
i=1

(
EFn

(
g̃(hn(ξ∗i , ξ

∗
j ))|ξ∗i

)
− EFn

(
g̃(hn(ξ∗i , ξ

∗
j ))
)

− EFn
(
g̃(h0,n(ξ∗i , ξ

∗
j ))|ξ∗i

)
+ EFn

(
g̃(h0,n(ξ∗i , ξ

∗
j ))
) )

+
2

√
nρ

τ(g)
n

n∑
i=1

(
EFn

(
g̃(h0,n(ξ∗i , ξ

∗
j ))|ξ∗i

)
− EFn

(
g̃(h0,n(ξ∗i , ξ

∗
j ))
)

− EF0
(g̃(h0,n(ξ∗i , ξj))|ξ∗i ) + EFn (EF0

(g̃(h0,n(ξ∗i , ξj))|ξ∗i ))
)

+
2

√
nρ

τ(g)
n

n∑
i=1

(EF0
(g̃(h0,n(ξ∗i , ξj))|ξ∗i )− EFn (EF0

(g̃(h0,n(ξ∗i , ξj))|ξ∗i )))

= T1 + T2 + T3

We deal with these terms one by one.

For T1, we do Taylor expansion of g̃ around h0,n:

g̃(hn(ξ∗i , ξ
∗
j ))− g̃(h0,n(ξ∗i , ξ

∗
j )) = g̃

′
(
h̃n(ξ∗i , ξ

∗
j )
) (
hn(ξ∗i , ξ

∗
j )− h0,n(ξ∗i , ξ

∗
j )
)

where h̃n(ξ∗i , ξ
∗
j ) is between hn(ξ∗i , ξ

∗
j ) and h0,n(ξ∗i , ξ

∗
j ). We can show that T1 goes to zero in second

mean, hence also in probability. Let:

T1 =
2

√
nρ

τ(g)
n

n∑
i=1

(
EFn

(
g̃(hn(ξ∗i , ξ

∗
j ))− g̃(h0,n(ξ∗i , ξ

∗
j ))|ξ∗i

)
− EFn

(
g̃(hn(ξ∗i , ξ

∗
j ))− g̃(h0,n(ξ∗i , ξ

∗
j ))
))

=
2

√
nρ

τ(g)
n

n∑
i=1

bi∗ .

Note that the terms inside the sum are independent and have zero expectation:

EFn(bi∗) = EFn (EFn (g̃(hn(ξ∗i , ξ
∗
k))− g̃(h0,n(ξ∗i , ξ

∗
k))|ξ∗i )− EFn (g̃(hn(ξ∗k, ξ

∗
l ))− g̃(h0,n(ξ∗k, ξ

∗
l ))))

LIE
= EFn (g̃(hn(ξ∗k, ξ

∗
l ))− g̃(h0,n(ξ∗k, ξ

∗
l )))− EFn (g̃(hn(ξ∗k, ξ

∗
l ))− g̃(h0,n(ξ∗k, ξ

∗
l ))) = 0
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Hence in the expansion of the square all terms with i 6= j are zero:

E
(
T 2

1

)
= E

( 2
√
nρ

τ(g)
n

n∑
i=1

bi∗

)2


= 4
1

nρ
2τ(g)
n

n∑
i=1

EFn
(
b2i∗
)

+ 8
1

nρ
2τ(g)
n

∑
i<j

EFn (bi∗bj∗)

i.i.d.
= 4ρ−2τ(g)

n EFn
(
b2i∗
)

+ 8
1

nρ
2τ(g)
n

∑
i<j

EFn (bi∗)EFn (bj∗)

= 4ρ−2τ(g)
n EFn

(
b2i∗
)

= 4ρ−2τ(g)
n EFn

((
EFn

(
g̃(hn(ξ∗i , ξ

∗
j ))− g̃(h0,n(ξ∗i , ξ

∗
j ))|ξ∗i

)
− EFn

(
g̃(hn(ξ∗i , ξ

∗
j ))− g̃(h0,n(ξ∗i , ξ

∗
j ))
))2)

= 4ρ−2τ(g)
n EFn

((
EFn

(
g̃(hn(ξ∗i , ξ

∗
j ))− g̃(h0,n(ξ∗i , ξ

∗
j ))|ξ∗i

))2)
− 4ρ−2τ(g)

n

(
EFn

(
g̃(hn(ξ∗i , ξ

∗
j ))− g̃(h0,n(ξ∗i , ξ

∗
j ))
))2

≤ 4ρ−2τ(g)
n EFn

((
EFn

(
g̃
′
(
h̃n(ξ∗i , ξ

∗
j )
) (
hn(ξ∗i , ξ

∗
j )− h0,n(ξ∗i , ξ

∗
j )
)
|ξi
))2

)

≤ 4

(
ρ−τ(g)+1
n sup

h∈[0,Mwρn]

∣∣∣g̃′(h)
∣∣∣)2

︸ ︷︷ ︸
<∞

EFn

((
1

ρn

(
hn(ξ∗i , ξ

∗
j )− h0,n(ξ∗i , ξ

∗
j )
))2

)
︸ ︷︷ ︸

=o(1)

−→ 0

In the first inequality we use the fact that the second term is negative and smaller in magnitude

than the first. We then pull the supremum over derivatives of g̃ out of the expectation, use Jensen’s

inequality to put the square inside the inner expectation, apply the law of iterated expectations,

and use the assumption 1. to get the conclusion.

As mentioned before, the derivative of g̃ is bounded for any choice of g, and as we take a

derivative with respect to h the leading term of the g̃
′

becomes proportional to power one lower

than g̃, i.e. ρ
−τ(g)+1
n g̃

′
= Op(1).

For the middle term, T2, we show that it goes to zero in mean squared. To simplify notation,

let T2 = 2√
nρ
τ(g)
n

∑n
i=1 ai∗ and notice that:

EFn (ai∗) = EFn
(
EFn

(
g̃(h0,n(ξ∗i , ξ

∗
j ))|ξ∗i

))
− EFn

(
g̃(h0,n(ξ∗i , ξ

∗
j ))
)︸ ︷︷ ︸

=0

−EFn (EF0
(g̃(h0,n(ξ∗i , ξj))|ξ∗i )) + EFn (EF0

(g̃(h0,n(ξ∗i , ξj))|ξ∗i ))︸ ︷︷ ︸
=0

= 0.
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Then we have:

E
(
T 2

2

)
= E

( 2
√
nρ

τ(g)
n

n∑
i=1

ai∗

)2


= 4
1

nρ
2τ(g)
n

n∑
i=1

EFn
(
a2
i∗
)

+ 8
1

nρ
2τ(g)
n

∑
i<j

EFn (ai∗aj∗)

i.i.d.
= 4ρ−2τ(g)

n EFn
(
a2
i∗
)

+ 8
1

nρ
2τ(g)
n

∑
i<j

EFn (ai∗)EFn (aj∗)

= 4ρ−2τ(g)
n EFn

(
a2
i∗
)

= 4EFn

((
EFn

(
˜̃g(w0(ξ∗i , ξ

∗
j ))|ξ∗i

)
+ EFn

(
˜̃g(w0(ξ∗i , ξ

∗
j ))
)
− EF0

(˜̃g(w0(ξ∗i , ξj))|ξ∗i )

+ EF0 (˜̃g(w0(ξi, ξj)))− EF0 (˜̃g(w0(ξi, ξj))) + EFn (EF0 (˜̃g(w0(ξ∗i , ξj))|ξ∗i ))
)2)

+O (ρn)

≤ 8EFn

((
EFn

(
˜̃g(w0(ξ∗i , ξ

∗
j ))|ξ∗i

))2)︸ ︷︷ ︸
−→EF0

((
EF0

(
˜̃g(w0(ξi,ξj))|ξi

))2
)

+8EFn

(
(EF0

(˜̃g(w0(ξ∗i , ξj))|ξ∗i ))
2
)

︸ ︷︷ ︸
−→EF0

((
EF0

(
˜̃g(w0(ξi,ξj))|ξi

))2
)

− 16EFn
(
EFn

(
˜̃g(w0(ξ∗i , ξ

∗
j ))|ξ∗i

)
EF0

(˜̃g(w0(ξ∗i , ξj))|ξ∗i )
)︸ ︷︷ ︸

−→EF0

((
EF0

(
˜̃g(w0(ξi,ξj))|ξi

))2
)

+ 8
(
EFn

(
˜̃g(w0(ξ∗i , ξ

∗
j ))
)
− EF0 (˜̃g(w0(ξi, ξj)))

)2︸ ︷︷ ︸
−→0

+ 8 (EF0
(˜̃g(w0(ξi, ξj)))− EFn (EF0

(˜̃g(w0(ξ∗i , ξj))|ξ∗i )))
2︸ ︷︷ ︸

−→0

+O (ρn)

−→ 0

In the 5th equality we plug in the definition of ai∗ , we add and subtract the term EF0 (˜̃g(w0(ξi, ξj))),

we bring the normalisation by ρ
−2τ(g)
n inside the expectation and use

g̃(ξi,ξj)

ρ
τ(g)
n

= ˜̃g (w0 (ξi, ξj)) +

O (ρn). In the next step, we apply (a+ b)2 ≤ 2a2 + 2b2, where a corresponds to the first four terms

in the previous summation, for which we expand the square, and b corresponds to the last two

terms. We now verify that we can apply property 2. to all resulting terms:

• By the independence between ξ∗j and ξ∗k when j 6= k and the law of iterated expectations we

can rewrite the first term as:

EFn

((
EFn

(
˜̃g(w0(ξ∗i , ξ

∗
j ))|ξ∗i

))2)
= EFn

(
EFn

(
˜̃g(w0(ξ∗i , ξ

∗
j ))|ξ∗i

)
EFn (˜̃g(w0(ξ∗i , ξ

∗
k))|ξ∗i )

)
= EFn

(
˜̃g(w0(ξ∗i , ξ

∗
j ))˜̃g(w0(ξ∗i , ξ

∗
k))
)
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We now check the conditions for 2. when all indices are unique:

EF0
(|˜̃g(w0(ξi, ξj))˜̃g(w0(ξi, ξk))|) LIE= EF0

(EF0
( |˜̃g(w0(ξi, ξj))˜̃g(w0(ξi, ξk))|| ξi))

≤ EF0
(EF0

( |˜̃g(w0(ξi, ξj))|| ξi)EF0
( |˜̃g(w0(ξi, ξk))|| ξi))

= EF0

(
EF0 ( |˜̃g(w0(ξi, ξj))|| ξi)

2
)

≤ EF0

(
EF0

(
˜̃g2(w0(ξi, ξj))

∣∣ ξi))
LIE
= EF0

(
˜̃g2(w0(ξi, ξj))

)
<∞.

When two indices are repeated we use Cauchy-Schwarz inequality:

EF0
(|˜̃g(w0(ξi, ξj))˜̃g(w0(ξi, ξi))|) ≤

√
EF0

(˜̃g2(w0(ξi, ξj)))EF0
(˜̃g2(w0(ξi, ξi))) <∞.

And when all indices are equal the condition EF0

(
˜̃g2(w0(ξi, ξi))

)
<∞ follows straight from

the assumptions. Hence we have

EFn

((
EFn

(
˜̃g(w0(ξ∗i , ξ

∗
j ))|ξ∗i

))2) −→ EF0
(|˜̃g(w0(ξi, ξj))˜̃g(w0(ξi, ξk))|)

= EF0

(
(EF0 (˜̃g(w0(ξi, ξj))|ξi))

2
)
.

• For the second term, we can verify the condition for 2. when the indices are unique:

EF0

(∣∣∣EF0
(˜̃g(w0(ξi, ξj))|ξi)

2
∣∣∣) = EF0

(
EF0

(˜̃g(w0(ξi, ξj))|ξi)
2
)

≤ EF0

(
EF0

(
˜̃g2(w0(ξi, ξj))|ξi

))
LIE
= EF0

(
˜̃g2(w0(ξi, ξj))

)
<∞,

where the inequality follows from Jensen’s inequality. When the indices are repeated:

EF0

(∣∣∣EF0
(˜̃g(w0(ξi, ξi))|ξi)

2
∣∣∣) = EF0

(
˜̃g2(w0(ξi, ξi))

)
<∞.

hence EFn

(
(EF0

(˜̃g(w0(ξ∗i , ξj))|ξ∗i ))
2
)
−→ EF0

(
(EF0

(˜̃g(w0(ξi, ξj))|ξi))
2
)

.

• The third term can be rewritten as:

EFn
(
EFn

(
˜̃g(w0(ξ∗i , ξ

∗
j ))|ξ∗i

)
EF0 (˜̃g(w0(ξ∗i , ξj))|ξ∗i )

)
= EFn

(
˜̃g(w0(ξ∗i , ξ

∗
j ))EF0

(˜̃g(w0(ξ∗i , ξj))|ξ∗i )
)
.
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Using Jensen’s inequality, we verify the condition for 2. when the indices are unique:

EF0
(|˜̃g(w0(ξi, ξj))EF0

(˜̃g(w0(ξi, ξk))|ξi)|)

≤ EF0
(|˜̃g(w0(ξi, ξj))|EF0

(|˜̃g(w0(ξi, ξk))| |ξi))

LIE
= EF0 (EF0 (|˜̃g(w0(ξi, ξj))| |ξi)EF0 (|˜̃g(w0(ξi, ξk))| |ξi))

= EF0

(
EF0 (|˜̃g(w0(ξi, ξj))| |ξi)

2
)

≤ EF0

(
EF0

(
˜̃g2(w0(ξi, ξj))|ξi

))
LIE
= EF0

(
˜̃g2(w0(ξi, ξj))

)
<∞

and using Jensen’s and Cauchy-Schwarz inequalities we verify it when the indices are equal:

EF0 (|˜̃g(w0(ξi, ξi))EF0 (˜̃g(w0(ξi, ξj))|ξi)|) ≤ EF0 (EF0 (|˜̃g(w0(ξi, ξi))˜̃g(w0(ξi, ξj))| |ξi))

LIE
= EF0 (|˜̃g(w0(ξi, ξi))˜̃g(w0(ξi, ξj))|)

≤
√
EF0

(˜̃g2(w0(ξi, ξj)))EF0
(˜̃g2(w0(ξi, ξi))) <∞.

hence

EFn
(
EFn

(
˜̃g(w0(ξ∗i , ξ

∗
j ))|ξ∗i

)
EF0

(˜̃g(w0(ξ∗i , ξj))|ξ∗i )
)

−→ EF0
(˜̃g(w0(ξi, ξj))EF0

(˜̃g(w0(ξi, ξj))|ξi)) = EF0

(
(EF0

(˜̃g(w0(ξi, ξj))|ξi))
2
)

• For the fourth term we can verify that

EF0 (|EF0 (˜̃g(w0(ξi, ξj))|ξi)|) ≤
√
EF0 (EF0 (˜̃g2(w0(ξi, ξj))|ξi))

LIE
=
√
EF0

(˜̃g2(w0(ξi, ξj))) <∞,

EF0
(|EF0

(˜̃g(w0(ξi, ξi))|ξi)|) = EF0
(|˜̃g(w0(ξi, ξi))|) ≤

√
EF0

(˜̃g2(w0(ξi, ξi))) <∞.

hence EFn
(
˜̃g(w0(ξ∗i , ξ

∗
j ))
)
−→ EF0

(˜̃g(w0(ξi, ξj))).

We combine all terms using continuous mapping theorem and see that they all cancel out and the

limit is zero.
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For T3, we can write:

T3 = 2ρ−τ(g)
n

√
V arFn(EF0

(g̃(h0,n(ξ∗i , ξj))|ξ∗i ))

×
n∑
i=1

EF0 (g̃(h0,n(ξ∗i , ξj))|ξ∗i )− EFn (EF0 (g̃(h0,n(ξ∗i , ξj))|ξ∗i ))
√
n
√
V arFn(EF0 (g̃(h0,n(ξ∗i , ξj))|ξ∗i ))

.

Denote the terms inside the sum by Xin. They have zero expectation:

EFn (Xin) =
EFn (EF0

(g̃(h0,n(ξ∗i , ξj))|ξ∗i )− EFn (EF0
(g̃(h0,n(ξ∗i , ξj))|ξ∗i )))

√
n
√
V arFn(EF0

(g̃(h0,n(ξ∗i , ξj))|ξ∗i ))
= 0.

Their variances sum to 1 for each n:

n∑
i=1

V arFn (Xin) = n
V arFn(EF0

(g̃(h0,n(ξ∗i , ξj))|ξ∗i ))

nV arFn(EF0
(g̃(h0,n(ξ∗i , ξj))|ξ∗i ))

= 1.

And for all n when i 6= j the terms Xin and Xjn are independent and identically distributed. Hence

by Lindeberg-Levy CLT for triangular arrays their sum converges in distribution to a standard

normal random variable.

For the multiplier term we have:

ρ−2τ(g)
n V arFn (EF0

(g̃(h0,n(ξ∗i , ξj))|ξ∗i )) = V arFn

(
EF0

(
ρ−τ(g)
n g̃(h0,n(ξ∗i , ξj))|ξ∗i

))
= V arFn (EF0

(˜̃g(w0(ξ∗i , ξj))|ξ∗i )) +O(ρn)

= EFn

(
EF0

(˜̃g(w0(ξ∗i , ξj))|ξ∗i )
2
)
− (EFn (EF0

(˜̃g(w0(ξ∗i , ξj))|ξ∗i )))
2

+O(ρn)

−→ EF0

(
EF0

(˜̃g(w0(ξi, ξj))|ξi)
2
)
− (EF0

(EF0
(˜̃g(w0(ξi, ξj))|ξi)))

2

= V arF0(EF0 (˜̃g(w0(ξi, ξj))|ξi)) ≡ σ2
1 <∞.

The first equality is pulling the normalisation inside the variance. The second equality applies

the definition og ˜̃g. The third equality is rewriting variance in terms of expectations. The limit

follows from 2. (we have already checked that the relevant absolute moments are finite when we

were checking conditions for convergence of T2, terms two and four) and the continuous mapping

theorem. The final line is by definition. Hence T3
d−→ N(0, 4σ2

1).

It remains to show that r̃n(hn, Fn) = op(1). We can check that the expression is
√
n times

a U-statistic with a kernel function G(ξ∗i , ξ
∗
j ) = ρ

−τ(g)
n

(
g̃(hn(ξ∗i , ξ

∗
j )) − EFn

(
g̃(hn(ξ∗i , ξ

∗
j ))|ξ∗i

)
−

EFn
(
g̃(hn(ξ∗i , ξ

∗
j ))|ξ∗j

)
+ EFn

(
g̃(hn(ξ∗i , ξ

∗
j ))
) )

. Note that E(G(ξ∗i , ξ
∗
j )) = E(G(ξ∗i , ξ

∗
j )|ξ∗i ) = 0, i.e.

it is a degenerate U-statistic with V ar(E(G(ξ∗i , ξ
∗
j )|ξ∗i )) = 0. We could show that the whole term is

negligible by convergence in second mean from definition, or rely on a Theorem from section 5.3.2
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in Serfling (2009) which, in the present setting, can be stated as:

Lemma (Theorem 5.3.2 in Serfling (2009)). If EFn

((
G(ξ∗i , ξ

∗
j )
)2)

<∞ then

EFn

(
(r̃n(hn, Fn))

2
)

= O

(
1

n

)
= o(1).

By Jensen’s inequality and the law of large numbers, ρ
−2τ(g)
n EFn

(
g̃2
(
hn
(
ξ∗i , ξ

∗
j

)))
is an upper

bound for all terms in the expansion of EFn

((
G(ξ∗i , ξ

∗
j )
)2)

. Hence the sufficient condition is implied

by:

ρ−2τ(g)
n EFn

(
g̃2
(
hn
(
ξ∗i , ξ

∗
j

)))
≤ 2EFn

(
˜̃g2
(
w0

(
ξ∗i , ξ

∗
j

)))︸ ︷︷ ︸
−→EF0

(
˜̃g2(w0(ξi,ξj))

)
<∞

+O(ρn)

+ 2

(
sup

h∈[0,Mwρn]

∣∣∣∣∣ g̃
′
(h)

ρ
τ(g)−1
n

∣∣∣∣∣
)2

︸ ︷︷ ︸
<∞

EFn

((
1

ρn

(
hn
(
ξ∗i , ξ

∗
j

)
− ĥn

(
ξ∗i , ξ

∗
j

)))2
)

︸ ︷︷ ︸
−→0

≤ 2EF0

(
˜̃g2 (w0 (ξi, ξj))

)
+ o(1).

Hence for any ε > 0 we can find an N sufficiently large so that the condition is satisfied:

EFn

((
G(ξ∗i , ξ

∗
j )
)2)

< 8EF0

(
˜̃g2 (w0 (ξi, ξj))

)
+ ε <∞ for all n > N .

Moving on to the second part of the proof, we check that the sequence
{
ĥn, F̂n

}∞
n=1

satisfies

assumptions 1. and 2. in probability:

1. Follows from Theorem 1:

EF̂n

((
1

ρn

(
ĥn(ξ∗i , ξ

∗
j )− h0,n(ξ∗i , ξ

∗
j )
))2

)
=

1

n2

n∑
i=1

n∑
j=1

(
1

ρn

(
ĥn(ξi, ξj)− h0,n(ξi, ξj)

))2

≤

(
max
i,j

∣∣∣∣∣ ĥn(ξi, ξj)− h0,n(ξi, ξj)

ρn

∣∣∣∣∣
)2

= op(1)2 = op(1).

2. Let f : Supp(ξ)3 −→ R be any symmetric function for which EF0
(|f (ξi, ξj , ξk)|) < ∞,
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EF0
(|f (ξi, ξi, ξj)|) <∞ and EF0

(|f (ξi, ξi, ξi)|) <∞. We have:

EF̂n
(
f(ξ∗i , ξ

∗
j , ξ
∗
k)
)

=
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

f(ξi, ξj , ξk)

=
(n− 1)(n− 2)

n2︸ ︷︷ ︸
−→1

1(
n
3

) ∑
i<j<k

f(ξi, ξj , ξk)︸ ︷︷ ︸
a.s.−−→EF0

(f(ξi,ξj ,ξk))<∞

+
3(n− 1)

n2︸ ︷︷ ︸
−→0

1(
n
2

) ∑
i<j

f(ξi, ξi, ξj)︸ ︷︷ ︸
a.s.−−→EF0

(f(ξi,ξi,ξj))<∞

+
1

n2︸︷︷︸
−→0

1

n

n∑
i=1

f(ξi, ξi, ξi)︸ ︷︷ ︸
a.s−−→EF0

(f(ξi,ξi,ξi))<∞

a.s.−−→ EF0
(f(ξi, ξj , ξk))

The first equality follows from the definition of the empirical distribution function F̂n. The

convergence of the two terms in the second line follows from the SLLN for U-statistics (see

e.g. Theorem A. in section 5.4 of Serfling (2009), p.190) given that EF0 (|f (ξi, ξj , ξk)|) <∞

and EF0
(|f (ξi, ξi, ξj)|) < ∞. The convergence of the term in the third line follows from

Kolmogorov’s SLLN for i.i.d. random variables which applies under the assumption that

EF0
(|f (ξi, ξi, ξi)|) < ∞. The final line is by continuous mapping theorem for almost sure

convergence. Condition 2. holds almost surely (hence also in probability), but because we

only get condition 1. in probability the overall result is for convergence weakly in probability.

The above result was stated for a normalisation using the unknown ρn. We now show that the

conslusions remain true when we replace it with an estimate.

Corollary A.1. Under the assumptions of Theorem A.2

ρ̂n − ρn = op(ρn),

hence

fn

(
A
(
ĥn(ξ∗), η∗

)
, ρ̂n, F̂n

)
= fn

(
A
(
ĥn(ξ∗), η∗

)
, ρn, F̂n

)
+ op(1)
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and we get all conclusions of Theorem A.1 in probability with J(t, w0, F0) = N(0,m2σ2
1) for

fn

(
A
(
ĥn (ξ∗) , η∗

)
, ρ̂n, F̂n

)
=

√
n(

n
m

)
ρ̂
τ(g)
n

∑
1≤ι1<···<ιm≤n

(
g
(
A
(
ĥn (ξ∗ (ι)) , η∗ (ι)

))
− Eĥn,F̂n

(
g
(
A
(
ĥn (ξ∗ (ι)) , η∗ (ι)

))))
.

Proof of Corollary A.1. Let ρ∗n denote the density of a bootstrap adjacency matrix formed by

ξ∗ ∼ Fn with linking probabilities hn. We can write

fn (A (hn (ξ∗) , η∗) , ρ∗n, Fn) =

(
ρn
ρ̂∗n

)τ(g)

fn (A (hn (ξ∗) , η∗) , ρn, Fn)

hence it is sufficient to show ρ∗n− ρn = op(ρn) which, by Slutsky’s theorem, implies
(
ρn
ρ∗n

)τ(g) p−→ 1.

Applying Theorem 3 to g(Aij) = Aij , for which m = 2 and τ(g) = 1, we have:

√
n(

n
2

)
ρn

∑
1≤i∗<j∗≤n

(Ai∗j∗ − Ehn,Fn(Ai∗j∗)) = Op(1)

where the expression is bounded in probability because it has a well-defined limiting distribution.

Hence

ρ∗n =
1(
n
2

) ∑
1≤i∗<j∗≤n

Ai∗j∗

= Ehn,Fn(Ai∗j∗) +
ρn√
n
Op(1)︸ ︷︷ ︸

= 1√
n
Op(ρn)=op(ρn)

= EFn (Ehn (Ai∗j∗ | ξ∗)) + op(ρn)

= EFn
(
Ehn

(
hn(ξ∗i , ξ

∗
j )
∣∣ ξ∗))+ op(ρn)

= ρn

(
EFn

(
1

ρn

(
hn(ξ∗i , ξ

∗
j )− h0,n(ξ∗i , ξ

∗
j )
))

+ EFn

(
1

ρn
h0,n(ξ∗i , ξ

∗
j )

))
+ op(ρn)

≤ ρn


√√√√EFn

((
1

ρn

(
hn(ξ∗i , ξ

∗
j )− h0,n(ξ∗i , ξ

∗
j )
))2

)
+ EFn

(
w0(ξ∗i , ξ

∗
j )
)+ op(ρn)

= ρn (o(1) + EF0
(w0 (ξi, ξj) + o(1))) + op(ρn)

= ρn(o(1) + 1 + o(1)) + op(ρn)

= ρn + op(ρn)

The first equality is by definition, the second follows from the above expression and result from

Theorem 3. The third equality uses the law of iterated expectations. The fourth equality is by
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definition of A. For the fifth equality we add and subtract EFn
(
h0,n(ξ∗i , ξ

∗
j )
)

and pull ρn out of the

bracket. The inequality is due to Jensen’s inequality where the final term is transformed according

to the definition of w0. The sixth equality uses assumptions 1. and 2.. The seventh equality is due

to the definition of w0 which is assumed to integrate to 1.

The above derivation applies to the case of ρ∗n = ρ̂n (for hn = h0,n and fn = F0), proving that

fn (A (h0,n (ξ) , η) , ρ̂n, F0) and fn (A (h0,n (ξ) , η) , ρn, F0) have the same asymptotic limit.

If we replaces ρ∗n with ρ̂∗n the o(1) terms in the derivation are replaced by op(1), which does not

affect the overall result. Hence we also get the same limit of fn

(
A
(
ĥn (ξ∗) , η∗

)
, ρ̂∗n, F̂n

)
.

We note that all conclusions of Theorem 3, Lemma 1 and Corollary 1 follow from Theorem A.2

and Corollary A.1, hence they have also been proven.

A.3 Useful results

For reference, we list some results which we use in our proofs:

Theorem (Bernstein’s inequality for bounded random variables34). Let Z1, . . . , Zn be independent

random variables. Assume that there exist some positive constant M such that |Zi| ≤ M with

probability one for each i. Let also σ2 = 1
n

∑n
i=1 V (Zi). Then, for all ε > 0:

P

(∣∣∣∣∣ 1n
n∑
i=1

(Zi − E(Zi))

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
− nε2

2
(
σ2 + 1

3Mε
)) . (44)

B Appendix: additional tables, plots, codes

B.1 Codes

In this section we present some of the codes used for simulations. A full package should eventually

become available online.

We start with the definitions of different distances and estimators of the linking functions:

def D2(A):

#a function which maps A into a matrix of distances D2

n= len(A)

V=(1/n)*np.matmul(A,A)

C=(1/n)*np.matmul(V,V)

B=np.matmul(np.diag(np.diag(C)),np.ones((n,n)))

D = B+B.T-2*C

return D

34. Copied after Zeleneev (2020).
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def Dmax(A):

#a function which maps A into a matrix of distances Dmax

n = len(A)

V = (1/n)*np.matmul(A,A)

F = torch.tensor(np.tensordot(np.ones(n),V,0))

G = torch.transpose(F, 1,0)

H = F-G

J=1-torch.transpose(np.fmax(torch.eye(n).repeat(n, 1, 1),np.tensordot(np.eye(n)

,np.ones(n),0)),2,1)

D = np.array(torch.amax(np.fmin(abs(H),J), dim=2))

return D

def HK1h(D,A,h):

# gives a kernel approximation to the linking function based on a one -way

normal kernel , with bandwidth h,

based on distance D

n= len(A)

K = np.exp(-0.5*(D/h)** 2)

K[np.isnan(K)] = 0

T=np.matmul(K,A)

B=np.matmul(K,np.ones((n,n)))-K

H = T/B

H=(H+np.transpose(H))/2

return H

def HK2h(D,A,h):

# gives a kernel approximation to the linking function based on a two -way

normal kernel , with bandwidth h,

based on distance D

n= len(A)

K = np.exp(-0.5*(D/h)** 2)

K[np.isnan(K)] = 0

H=np.matmul(K,np.matmul(A,K))/np.matmul(K,np.matmul(1-np.eye(n),K))

return H

def HNN1(D,A):

#gives a kernel approximation to h based on one -way nearest neighbours , with

bandwidth h, based on distance D

#uses the optimal neighbourhood size (n log(n))^{1/2}

n= len(A)

N_size = round(np.sqrt(n*np.log(n)))

N=np.argpartition(D, N_size+1)[:,:N_size+1]
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mask = np.ones((n,N_size+1), dtype=bool)

mask[range(n), np.argmax(N==np.array(range(n)).reshape(n,1), axis=1)] = False

N = N[mask].reshape(n, N_size)

mask2 = np.zeros((n,n), dtype=bool)

mask2[np.tile(np.array(range(n)).reshape(n,1),N_size), N] = True

mask_long=np.tile(mask2 ,(n,1))

A_long=np.tile(A,(1,n)).reshape(n*n,n)

Amlong = A_long[mask_long].reshape(n,n, N_size)

H=np.sum(Amlong ,2)/N_size

H=(H+np.transpose(H))/2

return H

In simulations we generate the true matrices using one of the following functions:

def high_rho_generate(n, r, rep):

# generates a rep number of true n by n matrices from the high rho function with

density r/1.35 , outputs only the

adjacency matrices

A_true = []

for s in range(rep):

w = np.random.uniform(0,1,(n))

u = np.random.uniform(0,1,(n,n))

eta = np.tril(u) + np.tril(u, -1).T

Wi = np.tensordot(w,np.ones(n),0)

Wj = np.tensordot(np.ones(n),w,0)

A = (eta < r*(1-((abs(0.5-Wi)<0.05) & (abs(0.5-Wj)<0.05)))*(1-0.5*(abs(0.5-

Wi)+abs(0.5-Wj)))/(0.975))*1

np.fill_diagonal(A, 0)

A_true.append(A)

return A_true

def horse_generate(n, r, rep):

# generates a rep number of true n by n matrices from the horseshoe function

with density r/4.44 , outputs only the

adjacency matrices

A_true = []

for s in range(rep):

w = np.random.uniform(0,1,(n))

u = np.random.uniform(0,1,(n,n))

eta = np.tril(u) + np.tril(u, -1).T

Wi = np.tensordot(w,np.ones(n),0)

Wj = np.tensordot(np.ones(n),w,0)

A = (eta < r*((np.exp(-200*(Wi-Wj ** 2)** 2)+np.exp(-200*(Wj-Wi ** 2)**2))/2))*1

np.fill_diagonal(A, 0)

93



A_true.append(A)

return A_true

def product_generate_A_h_xi(n, r, rep):

# generates a rep number of true n by n matrices from the product function with

density r/4, outputs the adjacency

matrices , the true linking function ,

and the true values of the underlying

characteristics $\xi_i$

A_true = []

xi_true = []

h_true = []

for s in range(rep):

w = np.random.uniform(0,1,(n))

u = np.random.uniform(0,1,(n,n))

eta = np.tril(u) + np.tril(u, -1).T

Wi = np.tensordot(w,np.ones(n),0)

Wj = np.tensordot(np.ones(n),w,0)

h = r*Wi*Wj

A = (eta < h)*1

np.fill_diagonal(A, 0)

np.fill_diagonal(h, 0)

A_true.append(A)

h_true.append(h)

xi_true.append(list(w))

return (A_true , h_true , np.array(xi_true))

Code for running bootstrap and finding the optimal bandwidth:

def boot_HK1h(A,h,B):

#outputs B bootstrapped adjacency matrices based on matrix A with bandwidth h

using linking function estimate HK1

n=len(A)

H_true = HK1h(D2(A),A,h)

#choose nodes for bootstrap villages:

v = np.random.randint(0, n, size=(B,n))

#generate new adjacency matrices

row = np.tensordot(v,np.ones(n),0).astype(int)

column = np.tile(np.array(v),n).reshape(B,n,n)

G = H_true[row ,column]

u = np.random.rand(B, n, n)

m = np.tril(u) + np.transpose(np.tril(u, -1),[0,2,1])

A_boot = (m < G)*1

[np.fill_diagonal(A_boot[i], 0) for i in range(B)]

94



return A_boot

def HK1h_loo(D,A,h):

#gives a leave -obe -out kernel approximation to h based on a one -way normal

kernel , with bandwidth h, based on

distance D

n= len(A)

K = np.exp(-0.5*(D/h)** 2)

K[np.isnan(K)] = 0

T = np.matmul(K,A) - np.matmul(np.diag(np.diag(K)),np.ones((n,n)))*A

B = np.matmul(K,np.ones((n,n)))-(K-np.diag(np.diag(K)))-np.matmul(np.diag(np.

diag(K)),np.ones((n,n)))

H = T/B

H=(H+np.transpose(H))/2

return H

def log_likelihood(A,H):

#the log - likelihood estimation for an adjacency matrix A under the assumption

it comes from a distribution with

linking probabilities in H

log_likelihood = np.sum(A*np.log(H)+(1-A)*np.log(1-H))

return log_likelihood

def ll(h, A):

#the leave -one -out log - likelihood objective function for use in minimising

procedures

return -log_likelihood(A,HK1h_loo(D2(A),A,h))

A sample Monte Carlo simulation code using the above definitions and the WARP procedure

from Giacomini, Politis, and White (2013) to obta confidence interval coverage:

#define the output data frame:

df_loo = pd.DataFrame(columns=[’S’, ’B’, ’n’, ’rho’,’average for true graphs ’, ’

true value’, ’alpha ’, ’proportion of

bootstrap CI that cover truth ’, ’average

length of bootstrap CI’, ’statistic ’,’h’]

)

#run the simulations :

ALPHA = [0.01, 0.05 , 0.1, 0.15 , 0.2, 0.3] #sizes of confidence intervals

NN = [25 , 50 , 100 , 150 , 200 , 300] #sample sizes

SS = [1000] #number of true graphs

RR = [1, 0.75,0.5,0.25,0.1] #sparsity level
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for n in NN:

for r in RR:

S_max = max(SS)

(A_true , h_true , xi_true) = product_generate_A_h_xi(n, r, S_max)

A_boot = []

h_list = []

B=1 #because of WARP we only need one bootstrap replication

true_density = r*0.25

for A in A_true[0:min(len(A_true),S_max)]:

#find the optimal bandwidth by minimising the leave -one -out log -

likelihood

h_guess = 0.2090189845643738*true_density **1.38258532*n **(-1.55268817)*

np.log(n)** 1.82661653

res = minimize(ll , h_guess , args=A, method = ’Nelder -Mead’, tol=1e-7,

bounds=((0,1.1),))

h = res.x[0]

#do bootstrap for matrix A using the optimal bandwidth

Ab = boot_HK1h(A,h,B)

#save the bootstrapped adjacency matrices and the bandwidth

A_boot.append(Ab)

h_list.append(h)

#estimate the statistic of interest for true and bootstrapped graphs

true_density_all = [nx.density(nx.from_numpy_array(A_true[s])) for s in

range(S_max)]]

true_density_mean = np.mean(true_density_all)

boot_density_all = [nx.density(nx.from_numpy_array(A_boot[s][0])) for s in

range(S_max)]

#find the confidence interval coverage using WARP

for S in SS:

if (S<=len(A_true)):

true_density_vec = true_density_all[0:S]

boot_density = boot_density_all[0:S]

stat = ’density ’

density_minus_true = np.array(boot_density) - np.array(

true_density_vec)

for alpha in ALPHA:

qu= np.percentile(density_minus_true , 100*(1-alpha/2))
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ql= np.percentile(density_minus_true , 100*(alpha/2))

bl = true_density_vec - qu

bu = true_density_vec - ql

co= np.mean([bl[i] <= true_density <= bu[i] for i in range(S)])

me = np.mean(bu-bl)

df_loo = df_loo._append({’S’: S, "B": B, ’n’: n, "rho": r, ’

average for true

graphs ’:

true_density_mean , ’

true value’:

true_density , ’alpha’

: alpha , ’proportion

of bootstrap CI that

cover truth’: co , ’

average length of

bootstrap CI’: me , ’

statistic ’: stat , ’h’

: np.mean(h_list)},

ignore_index = True)

#save the output

df_loo.to_csv(’df_loo_product_n_25_300_true_dens.csv’)

B.2 Monte Carlo simulations: tables and a sensitivity check

Since we are using the WARP procedure instead of traditional Monte Carlo simulations, we test

its sensitivity by checking the effect of varying the number of simulated true graphs S rather than

the number of bootstrap replications B, which is always kept at B = 1. Fig. 11a shows that the

predictions for different statistics stabilise above S around 750 or higher. This is true in most

simulations (see Table 4, Table 5), with the exception of networks with high density such as that

in Fig. 11b (and Table 6) in which the predictions don’t stabilise until S = 1250 or even S = 1500.

In all other sections we use S = 1000. Running more repetitions is computationally expensive and

provides little advantage in terms of accuracy in the majority of cases.
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(a) Confidence interval coverage for density us-
ing the product generating function at n = 500
and ρn = 0.1875.

(b) Confidence interval coverage for transitiv-
ity using the high density generating function
at n = 500 and ρn = 0.759.

Figure 11: Confidence interval coverage for different number of simulated true graphs S based on
Monte Carlo simulations.
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average for Proportion of bootstrap CI that cover truth for
n statistic ρn true graphs α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

500 λ1 0.024 17.116 1.000 0.971 0.925 0.858 0.804 0.660
0.078 52.502 0.998 0.961 0.900 0.854 0.811 0.706
0.139 93.282 0.997 0.956 0.884 0.844 0.799 0.685
0.250 166.453 0.995 0.954 0.887 0.825 0.778 0.692

λ3 0.024 7.823 0.005 0.000 0.000 0.000 0.000 0.000
0.078 12.825 0.000 0.000 0.000 0.000 0.000 0.000
0.139 15.582 0.000 0.000 0.000 0.000 0.000 0.000
0.250 17.042 0.000 0.000 0.000 0.000 0.000 0.000

λ10 0.024 7.022 0.997 0.985 0.943 0.876 0.803 0.596
0.078 11.627 0.391 0.058 0.018 0.008 0.004 0.002
0.139 14.197 0.082 0.000 0.000 0.000 0.000 0.000
0.250 15.667 0.000 0.000 0.000 0.000 0.000 0.000

Louvain CDA modularity 0.024 0.243 0.000 0.000 0.000 0.000 0.000 0.000
0.078 0.119 0.001 0.000 0.000 0.000 0.000 0.000
0.139 0.082 0.015 0.001 0.001 0.001 0.000 0.000
0.250 0.052 0.198 0.061 0.021 0.008 0.006 0.002

density 0.024 0.024 0.405 0.177 0.096 0.059 0.044 0.024
0.078 0.078 0.989 0.909 0.811 0.752 0.699 0.620
0.139 0.139 0.993 0.955 0.889 0.827 0.771 0.672
0.250 0.250 0.992 0.953 0.897 0.839 0.788 0.659

max betweenness centrality 0.024 0.019 0.304 0.058 0.033 0.023 0.013 0.010
0.078 0.011 1.000 0.965 0.809 0.692 0.591 0.439
0.139 0.009 1.000 0.995 0.981 0.923 0.847 0.668
0.250 0.008 1.000 0.997 0.969 0.901 0.835 0.713

transitivity 0.024 0.043 1.000 1.000 1.000 0.997 0.993 0.952
0.078 0.138 1.000 0.967 0.928 0.899 0.864 0.774
0.139 0.247 0.985 0.954 0.903 0.859 0.818 0.719
0.250 0.443 0.991 0.947 0.890 0.835 0.779 0.672

triangle density 0.024 0.000 0.990 0.852 0.706 0.563 0.456 0.309
0.078 0.001 0.998 0.965 0.905 0.845 0.798 0.701
0.139 0.006 0.991 0.959 0.902 0.840 0.794 0.692
0.250 0.037 0.992 0.956 0.882 0.828 0.779 0.678

1000 λ1 0.013 18.974 0.894 0.677 0.470 0.379 0.270 0.157
0.058 77.998 0.991 0.951 0.886 0.847 0.812 0.715
0.120 160.817 0.988 0.959 0.911 0.859 0.814 0.749
0.250 332.967 0.987 0.959 0.904 0.852 0.810 0.747

λ3 0.013 8.573 0.000 0.000 0.000 0.000 0.000 0.000
0.058 16.482 0.000 0.000 0.000 0.000 0.000 0.000
0.120 21.588 0.000 0.000 0.000 0.000 0.000 0.000
0.250 24.642 0.000 0.000 0.000 0.000 0.000 0.000

λ10 0.013 8.002 0.044 0.000 0.000 0.000 0.000 0.000
0.058 15.493 0.000 0.000 0.000 0.000 0.000 0.000
0.120 20.377 0.000 0.000 0.000 0.000 0.000 0.000
0.250 23.414 0.000 0.000 0.000 0.000 0.000 0.000

Louvain CDA modularity 0.013 0.234 0.000 0.000 0.000 0.000 0.000 0.000
0.058 0.100 0.000 0.000 0.000 0.000 0.000 0.000
0.120 0.064 0.000 0.000 0.000 0.000 0.000 0.000
0.250 0.037 0.000 0.000 0.000 0.000 0.000 0.000

density 0.013 0.013 0.000 0.000 0.000 0.000 0.000 0.000
0.058 0.058 0.937 0.849 0.777 0.705 0.669 0.576
0.120 0.120 0.984 0.943 0.892 0.836 0.800 0.725
0.250 0.250 0.992 0.953 0.896 0.846 0.800 0.732

max betweenness centrality 0.013 0.011 0.101 0.010 0.006 0.004 0.003 0.001
0.058 0.006 1.000 0.960 0.872 0.776 0.690 0.531
0.120 0.005 0.998 0.994 0.975 0.957 0.916 0.775
0.250 0.004 1.000 0.993 0.982 0.947 0.899 0.791

transitivity 0.013 0.024 1.000 1.000 0.998 0.982 0.955 0.880
0.058 0.103 0.997 0.980 0.942 0.906 0.864 0.778
0.120 0.214 0.983 0.952 0.913 0.868 0.835 0.733
0.250 0.444 0.988 0.959 0.922 0.880 0.827 0.716

triangle density 0.013 0.000 0.385 0.144 0.064 0.040 0.027 0.011
0.058 0.000 0.991 0.946 0.884 0.846 0.804 0.714
0.120 0.004 0.988 0.967 0.921 0.857 0.809 0.745
0.250 0.037 0.984 0.966 0.910 0.856 0.807 0.746

Table 1: Confidence interval coverage for different densities based on Monte Carlo simulations using the product
generating function when S = 1000.
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average for Proportion of bootstrap CI that cover truth for
n statistic ρn true graphs α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

250 λ1 0.127 33.515 0.993 0.961 0.885 0.805 0.744 0.614
0.307 79.477 0.995 0.965 0.932 0.892 0.851 0.754
0.476 122.926 0.992 0.976 0.938 0.901 0.845 0.748
0.740 190.475 0.989 0.970 0.932 0.886 0.838 0.732

λ3 0.127 10.044 0.000 0.000 0.000 0.000 0.000 0.000
0.307 13.573 0.000 0.000 0.000 0.000 0.000 0.000
0.476 14.350 0.000 0.000 0.000 0.000 0.000 0.000
0.740 12.038 0.608 0.107 0.020 0.004 0.000 0.000

λ10 0.127 8.891 0.000 0.000 0.000 0.000 0.000 0.000
0.307 12.043 0.000 0.000 0.000 0.000 0.000 0.000
0.476 12.728 0.000 0.000 0.000 0.000 0.000 0.000
0.740 10.505 0.996 0.972 0.947 0.886 0.839 0.722

Louvain CDA modularity 0.127 0.137 0.000 0.000 0.000 0.000 0.000 0.000
0.307 0.074 0.000 0.000 0.000 0.000 0.000 0.000
0.476 0.049 0.000 0.000 0.000 0.000 0.000 0.000
0.740 0.024 0.981 0.900 0.787 0.716 0.610 0.440

density 0.130 0.130 1.000 1.000 0.991 0.977 0.959 0.885
0.314 0.314 0.998 0.986 0.964 0.930 0.886 0.802
0.488 0.488 0.996 0.980 0.946 0.902 0.858 0.744
0.759 0.759 0.993 0.968 0.927 0.887 0.840 0.741

max betweenness centrality 0.127 0.009 0.750 0.271 0.119 0.079 0.067 0.040
0.307 0.005 1.000 0.813 0.605 0.466 0.390 0.249
0.476 0.003 0.997 0.852 0.761 0.639 0.533 0.379
0.740 0.001 0.994 0.930 0.882 0.821 0.766 0.651

transitivity 0.127 0.132 0.999 0.990 0.971 0.923 0.886 0.771
0.307 0.318 0.995 0.970 0.931 0.893 0.856 0.749
0.476 0.494 0.992 0.976 0.944 0.907 0.857 0.745
0.740 0.768 0.993 0.970 0.943 0.884 0.824 0.728

triangle density 0.127 0.002 0.999 0.991 0.968 0.910 0.844 0.769
0.307 0.032 0.995 0.975 0.948 0.917 0.871 0.783
0.476 0.119 0.994 0.981 0.944 0.903 0.854 0.755
0.740 0.446 0.989 0.971 0.934 0.893 0.836 0.731

500 λ1 0.071 37.783 0.966 0.846 0.712 0.602 0.504 0.325
0.230 119.330 0.998 0.977 0.933 0.907 0.859 0.787
0.413 213.258 0.999 0.980 0.947 0.904 0.864 0.781
0.740 381.727 0.999 0.960 0.926 0.879 0.833 0.752

λ3 0.071 11.362 0.000 0.000 0.000 0.000 0.000 0.000
0.230 18.167 0.000 0.000 0.000 0.000 0.000 0.000
0.413 20.806 0.000 0.000 0.000 0.000 0.000 0.000
0.740 17.709 0.000 0.000 0.000 0.000 0.000 0.000

λ10 0.071 10.551 0.000 0.000 0.000 0.000 0.000 0.000
0.230 16.902 0.000 0.000 0.000 0.000 0.000 0.000
0.413 19.377 0.000 0.000 0.000 0.000 0.000 0.000
0.740 16.336 0.000 0.000 0.000 0.000 0.000 0.000

Louvain CDA modularity 0.071 0.135 0.000 0.000 0.000 0.000 0.000 0.000
0.230 0.066 0.000 0.000 0.000 0.000 0.000 0.000
0.413 0.041 0.000 0.000 0.000 0.000 0.000 0.000
0.740 0.018 0.671 0.153 0.038 0.019 0.005 0.002

density 0.073 0.073 1.000 0.998 0.990 0.975 0.946 0.882
0.236 0.236 0.999 0.992 0.977 0.938 0.905 0.839
0.423 0.423 0.999 0.984 0.953 0.915 0.885 0.791
0.759 0.759 0.998 0.965 0.921 0.883 0.845 0.755

max betweenness centrality 0.071 0.005 0.097 0.031 0.012 0.009 0.006 0.002
0.230 0.003 0.959 0.643 0.462 0.352 0.269 0.190
0.413 0.002 0.995 0.902 0.764 0.630 0.517 0.344
0.740 0.001 0.988 0.943 0.891 0.846 0.791 0.671

transitivity 0.071 0.074 1.000 0.999 0.979 0.953 0.887 0.772
0.230 0.239 0.998 0.987 0.952 0.906 0.872 0.792
0.413 0.428 0.999 0.986 0.959 0.921 0.882 0.808
0.740 0.769 0.997 0.962 0.930 0.897 0.835 0.754

triangle density 0.071 0.000 0.998 0.977 0.911 0.849 0.809 0.668
0.230 0.013 0.998 0.988 0.957 0.927 0.890 0.811
0.413 0.077 0.999 0.983 0.956 0.920 0.862 0.797
0.740 0.446 0.999 0.957 0.928 0.885 0.833 0.754

Table 2: Confidence interval coverage for different densities based on Monte Carlo simulations using the high density
generating function when S = 1000.
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average for Proportion of bootstrap CI that cover truth for
n statistic ρn true graphs α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

750 λ1 0.008 7.696 0.981 0.899 0.700 0.563 0.446 0.311
0.029 25.866 0.991 0.936 0.890 0.841 0.786 0.673
0.058 49.481 0.985 0.944 0.880 0.828 0.794 0.696
0.113 95.648 0.983 0.946 0.897 0.829 0.779 0.681

λ3 0.008 5.338 0.000 0.000 0.000 0.000 0.000 0.000
0.029 12.664 0.758 0.567 0.431 0.333 0.279 0.209
0.058 22.937 0.979 0.898 0.825 0.764 0.709 0.619
0.113 43.090 0.984 0.902 0.833 0.759 0.705 0.610

λ10 0.008 4.773 0.698 0.171 0.052 0.017 0.012 0.004
0.029 8.859 0.000 0.000 0.000 0.000 0.000 0.000
0.058 11.656 0.000 0.000 0.000 0.000 0.000 0.000
0.113 14.127 0.989 0.937 0.876 0.831 0.793 0.701

Louvain CDA modularity 0.008 0.436 0.000 0.000 0.000 0.000 0.000 0.000
0.029 0.323 0.891 0.806 0.712 0.646 0.585 0.494
0.058 0.307 0.974 0.915 0.836 0.756 0.689 0.589
0.113 0.294 0.988 0.948 0.903 0.842 0.754 0.673

density 0.008 0.008 0.007 0.000 0.000 0.000 0.000 0.000
0.029 0.029 0.952 0.719 0.569 0.413 0.317 0.203
0.058 0.058 0.980 0.932 0.876 0.821 0.758 0.678
0.113 0.113 0.993 0.948 0.905 0.855 0.802 0.710

max betweenness centrality 0.008 0.023 0.806 0.334 0.176 0.125 0.094 0.062
0.029 0.008 1.000 0.990 0.885 0.797 0.692 0.508
0.058 0.006 1.000 0.969 0.869 0.713 0.586 0.464
0.113 0.005 1.000 0.996 0.960 0.890 0.811 0.665

transitivity 0.008 0.010 1.000 1.000 1.000 0.998 0.995 0.973
0.029 0.039 0.987 0.946 0.901 0.848 0.794 0.714
0.058 0.076 0.983 0.945 0.884 0.840 0.809 0.699
0.113 0.148 0.976 0.926 0.870 0.824 0.782 0.668

triangle density 0.008 0.000 1.000 0.998 0.992 0.972 0.935 0.869
0.029 0.000 0.998 0.961 0.920 0.883 0.835 0.743
0.058 0.000 0.992 0.930 0.894 0.846 0.800 0.709
0.113 0.002 0.976 0.930 0.876 0.824 0.771 0.682

1000 λ1 0.006 8.002 0.977 0.788 0.611 0.472 0.332 0.204
0.026 30.381 0.998 0.941 0.894 0.844 0.787 0.689
0.054 61.907 0.998 0.942 0.886 0.831 0.792 0.694
0.113 127.414 0.996 0.950 0.900 0.844 0.781 0.672

λ3 0.006 5.528 0.000 0.000 0.000 0.000 0.000 0.000
0.026 14.699 0.903 0.682 0.563 0.461 0.416 0.333
0.054 28.486 0.986 0.947 0.891 0.846 0.789 0.678
0.113 57.194 0.989 0.934 0.887 0.836 0.776 0.694

λ10 0.006 5.000 0.141 0.001 0.000 0.000 0.000 0.000
0.026 9.885 0.000 0.000 0.000 0.000 0.000 0.000
0.054 13.380 0.000 0.000 0.000 0.000 0.000 0.000
0.113 16.554 0.995 0.972 0.914 0.848 0.801 0.697

Louvain CDA modularity 0.006 0.425 0.000 0.000 0.000 0.000 0.000 0.000
0.026 0.319 0.958 0.898 0.834 0.786 0.731 0.604
0.054 0.302 0.971 0.881 0.804 0.747 0.643 0.557
0.113 0.291 0.998 0.969 0.924 0.875 0.834 0.707

density 0.006 0.006 0.000 0.000 0.000 0.000 0.000 0.000
0.026 0.026 0.810 0.537 0.366 0.285 0.173 0.101
0.054 0.054 0.980 0.895 0.828 0.776 0.735 0.605
0.113 0.113 0.988 0.966 0.909 0.869 0.793 0.690

max betweenness centrality 0.006 0.018 0.658 0.210 0.104 0.066 0.045 0.028
0.026 0.006 1.000 0.995 0.897 0.776 0.697 0.507
0.054 0.004 1.000 0.936 0.765 0.643 0.522 0.370
0.113 0.003 1.000 0.997 0.918 0.874 0.843 0.706

transitivity 0.006 0.008 1.000 1.000 1.000 0.998 0.993 0.968
0.026 0.034 0.993 0.957 0.898 0.846 0.794 0.685
0.054 0.071 0.991 0.945 0.888 0.815 0.763 0.654
0.113 0.147 0.992 0.944 0.868 0.800 0.747 0.625

triangle density 0.006 0.000 1.000 0.996 0.974 0.946 0.906 0.800
0.026 0.000 0.998 0.980 0.937 0.872 0.818 0.716
0.054 0.000 0.993 0.957 0.875 0.832 0.765 0.649
0.113 0.002 0.994 0.943 0.886 0.805 0.737 0.606

Table 3: Confidence interval coverage for different densities based on Monte Carlo simulations using the horseshoe
generating function when S = 1000.
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average for Proportion of bootstrap CI that cover truth for

n average a(opt) statistic true graphs S α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

300 0.000105 density 0.187 100 1.000 0.990 0.930 0.880 0.880 0.760
200 0.995 0.950 0.910 0.870 0.840 0.770
300 0.993 0.947 0.910 0.850 0.803 0.740
500 0.996 0.950 0.916 0.854 0.806 0.726
750 0.996 0.943 0.897 0.835 0.795 0.709
1000 0.996 0.939 0.897 0.847 0.812 0.712
1250 0.993 0.941 0.902 0.845 0.811 0.714
1500 0.995 0.945 0.901 0.846 0.807 0.713
2000 0.995 0.949 0.900 0.849 0.809 0.719

λ1 75.206 100 1.000 0.990 0.920 0.890 0.840 0.700
200 0.995 0.955 0.905 0.870 0.815 0.730
300 0.993 0.950 0.890 0.853 0.820 0.733
500 0.996 0.944 0.894 0.860 0.824 0.722
750 0.996 0.941 0.892 0.843 0.819 0.719
1000 0.994 0.942 0.898 0.843 0.813 0.725
1250 0.993 0.941 0.897 0.850 0.818 0.721
1500 0.993 0.949 0.899 0.853 0.815 0.724
2000 0.995 0.952 0.899 0.851 0.815 0.719

transitivity 0.332 100 1.000 0.980 0.940 0.890 0.810 0.700
200 1.000 0.965 0.925 0.890 0.825 0.680
300 0.997 0.947 0.917 0.870 0.817 0.700
500 0.992 0.946 0.896 0.836 0.796 0.702
750 0.991 0.949 0.904 0.841 0.815 0.715
1000 0.990 0.946 0.888 0.847 0.812 0.712
1250 0.990 0.946 0.890 0.839 0.806 0.712
1500 0.989 0.946 0.893 0.845 0.809 0.718
2000 0.990 0.949 0.905 0.848 0.805 0.712

500 0.000059 density 0.188 100 0.950 0.910 0.890 0.830 0.790 0.640
200 0.975 0.925 0.890 0.845 0.790 0.630
300 0.983 0.953 0.897 0.850 0.803 0.663
500 0.982 0.954 0.914 0.848 0.804 0.692
750 0.983 0.948 0.897 0.849 0.809 0.707
1000 0.982 0.949 0.905 0.852 0.812 0.712
1250 0.989 0.957 0.917 0.865 0.825 0.713
1500 0.991 0.958 0.919 0.876 0.829 0.715
2000 0.993 0.960 0.919 0.869 0.827 0.722

λ1 125.416 100 0.940 0.910 0.860 0.790 0.780 0.660
200 0.990 0.920 0.890 0.840 0.790 0.670
300 0.990 0.947 0.910 0.867 0.817 0.670
500 0.986 0.954 0.928 0.858 0.828 0.668
750 0.991 0.951 0.913 0.863 0.815 0.696
1000 0.988 0.951 0.915 0.866 0.811 0.709
1250 0.990 0.954 0.914 0.872 0.820 0.716
1500 0.991 0.955 0.919 0.875 0.817 0.719
2000 0.995 0.959 0.920 0.881 0.816 0.716

transitivity 0.333 100 0.990 0.960 0.800 0.770 0.710 0.630
200 0.990 0.950 0.935 0.820 0.775 0.660
300 0.987 0.953 0.930 0.863 0.803 0.717
500 0.986 0.964 0.926 0.874 0.814 0.706
750 0.988 0.969 0.931 0.875 0.825 0.727
1000 0.982 0.957 0.922 0.865 0.812 0.722
1250 0.993 0.962 0.921 0.862 0.815 0.720
1500 0.990 0.961 0.917 0.862 0.815 0.713
2000 0.997 0.963 0.923 0.874 0.824 0.713

Table 4: Confidence interval coverage for different number of simulated true graphs S based on Monte Carlo simulations
using the product generating function when n = 300 or n = 500 and ρn = 0.1874.
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average for Proportion of bootstrap CI that cover truth for

n average a(opt) statistic true graphs S α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

300 0.000046 density 0.112 100 0.990 0.990 0.960 0.960 0.950 0.770
200 0.990 0.980 0.955 0.945 0.925 0.850
300 0.990 0.983 0.963 0.940 0.903 0.827
500 0.992 0.976 0.952 0.922 0.880 0.802
750 0.992 0.972 0.948 0.905 0.860 0.780
1000 0.994 0.974 0.945 0.901 0.866 0.781
1250 0.995 0.975 0.943 0.898 0.858 0.775
1500 0.995 0.975 0.937 0.899 0.859 0.774
2000 0.998 0.973 0.940 0.901 0.855 0.761

λ2 25.306 100 0.970 0.960 0.810 0.720 0.700 0.630
200 0.980 0.965 0.910 0.875 0.800 0.665
300 0.990 0.963 0.930 0.900 0.830 0.680
500 0.994 0.954 0.910 0.876 0.818 0.662
750 0.991 0.953 0.905 0.861 0.800 0.669
1000 0.995 0.959 0.911 0.859 0.805 0.669
1250 0.995 0.957 0.912 0.866 0.819 0.674
1500 0.995 0.965 0.917 0.871 0.821 0.682
2000 0.997 0.963 0.919 0.869 0.819 0.693

transitivity 0.146 100 0.980 0.850 0.810 0.780 0.750 0.670
200 1.000 0.910 0.845 0.790 0.755 0.685
300 0.987 0.873 0.820 0.793 0.743 0.663
500 0.986 0.912 0.846 0.802 0.772 0.690
750 0.983 0.920 0.856 0.809 0.772 0.667
1000 0.995 0.932 0.881 0.813 0.777 0.674
1250 0.994 0.934 0.885 0.818 0.779 0.674
1500 0.995 0.943 0.889 0.830 0.791 0.685
2000 0.994 0.945 0.885 0.822 0.776 0.681

500 0.000031 density 0.112 100 0.970 0.910 0.860 0.830 0.810 0.750
200 0.985 0.955 0.890 0.855 0.815 0.750
300 0.990 0.953 0.937 0.873 0.820 0.773
500 1.000 0.962 0.946 0.892 0.836 0.746
750 0.999 0.961 0.949 0.896 0.848 0.761
1000 0.998 0.961 0.936 0.878 0.832 0.748
1250 0.997 0.966 0.940 0.890 0.843 0.746
1500 0.996 0.966 0.937 0.886 0.831 0.731
2000 0.998 0.964 0.931 0.883 0.834 0.743

λ2 41.732 100 0.990 0.940 0.900 0.830 0.770 0.710
200 1.000 0.970 0.905 0.795 0.765 0.695
300 0.997 0.943 0.887 0.817 0.783 0.717
500 0.998 0.948 0.910 0.844 0.802 0.734
750 0.999 0.955 0.897 0.829 0.797 0.727
1000 0.998 0.960 0.905 0.834 0.801 0.725
1250 0.998 0.962 0.900 0.842 0.806 0.731
1500 0.998 0.958 0.896 0.834 0.797 0.715
2000 0.998 0.956 0.905 0.848 0.804 0.726

transitivity 0.147 100 0.990 0.950 0.890 0.860 0.750 0.690
200 0.985 0.960 0.940 0.880 0.845 0.720
300 0.983 0.947 0.930 0.850 0.807 0.700
500 0.988 0.958 0.908 0.838 0.790 0.670
750 0.989 0.953 0.896 0.843 0.795 0.676
1000 0.989 0.955 0.898 0.855 0.812 0.697
1250 0.990 0.958 0.904 0.859 0.813 0.701
1500 0.991 0.951 0.901 0.859 0.806 0.703
2000 0.991 0.956 0.890 0.846 0.792 0.684

Table 5: Confidence interval coverage for different number of simulated true graphs S based on Monte Carlo simulations
using the horseshoe generating function when ρn = 0.1125.
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average for Proportion of bootstrap CI that cover truth for
ρn statistic true graphs S α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

0.569 density 0.570 100 1.000 0.990 0.970 0.950 0.910 0.810
200 1.000 0.980 0.955 0.930 0.855 0.760
300 1.000 0.980 0.947 0.913 0.843 0.757
500 1.000 0.980 0.946 0.890 0.832 0.754
750 1.000 0.975 0.925 0.855 0.815 0.715
1000 0.996 0.975 0.928 0.858 0.821 0.733
1250 0.998 0.970 0.918 0.851 0.815 0.718
1500 0.997 0.969 0.924 0.863 0.820 0.723
2000 0.994 0.970 0.924 0.862 0.820 0.722

λ1 286.543 100 1.000 0.940 0.800 0.740 0.730 0.590
200 0.985 0.960 0.905 0.840 0.770 0.650
300 0.983 0.940 0.910 0.840 0.750 0.623
500 0.984 0.940 0.898 0.822 0.742 0.638
750 0.992 0.948 0.907 0.841 0.792 0.687
1000 0.993 0.944 0.903 0.842 0.784 0.701
1250 0.996 0.962 0.908 0.848 0.796 0.700
1500 0.997 0.963 0.907 0.862 0.797 0.699
2000 0.998 0.966 0.910 0.868 0.814 0.708

transitivity 0.576 100 1.000 0.920 0.870 0.730 0.650 0.580
200 0.985 0.955 0.900 0.840 0.795 0.670
300 0.983 0.927 0.903 0.803 0.753 0.630
500 0.986 0.940 0.886 0.834 0.760 0.652
750 0.999 0.949 0.908 0.856 0.795 0.688
1000 0.998 0.948 0.901 0.855 0.800 0.699
1250 0.998 0.967 0.909 0.866 0.806 0.698
1500 0.997 0.967 0.911 0.869 0.807 0.691
2000 0.998 0.969 0.912 0.869 0.821 0.703

0.759 density 0.759 100 0.990 0.990 0.920 0.920 0.910 0.770
200 0.995 0.970 0.925 0.900 0.840 0.690
300 0.990 0.977 0.917 0.870 0.840 0.723
500 0.988 0.974 0.918 0.882 0.842 0.712
750 0.996 0.977 0.928 0.893 0.849 0.747
1000 0.990 0.970 0.926 0.895 0.861 0.748
1250 0.992 0.965 0.928 0.890 0.855 0.739
1500 0.990 0.958 0.915 0.873 0.827 0.707
2000 0.990 0.957 0.906 0.861 0.818 0.700

λ1 381.690 100 0.960 0.940 0.860 0.850 0.800 0.680
200 0.970 0.945 0.900 0.895 0.870 0.675
300 0.987 0.957 0.910 0.897 0.813 0.710
500 0.992 0.964 0.918 0.882 0.834 0.732
750 0.987 0.967 0.907 0.863 0.832 0.737
1000 0.989 0.962 0.912 0.874 0.833 0.739
1250 0.990 0.958 0.903 0.845 0.809 0.710
1500 0.990 0.961 0.908 0.850 0.813 0.711
2000 0.989 0.957 0.902 0.849 0.814 0.708

transitivity 0.768 100 0.950 0.940 0.870 0.840 0.760 0.690
200 0.965 0.930 0.900 0.885 0.830 0.700
300 0.983 0.957 0.910 0.890 0.850 0.693
500 0.992 0.968 0.914 0.886 0.854 0.722
750 0.987 0.967 0.915 0.881 0.837 0.735
1000 0.988 0.962 0.917 0.878 0.836 0.734
1250 0.990 0.956 0.896 0.854 0.802 0.706
1500 0.989 0.958 0.903 0.860 0.805 0.711
2000 0.990 0.957 0.900 0.855 0.807 0.711

Table 6: Confidence interval coverage for different number of simulated true graphs S based on Monte Carlo simulations
using the high density generating function when n = 500.
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average for Proportion of bootstrap CI that cover truth for
n statistic true graphs method α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

100 λ1 17.222 HK1 0.998 0.982 0.940 0.895 0.854 0.775
HK2 0.998 0.986 0.939 0.894 0.861 0.769
HNN1 0.947 0.777 0.648 0.590 0.507 0.397
emp 0.999 0.953 0.912 0.877 0.842 0.742

λ2 6.418 HK1 0.974 0.858 0.704 0.599 0.504 0.341
HK2 1.000 0.947 0.879 0.796 0.679 0.514
HNN1 0.966 0.896 0.771 0.675 0.612 0.537
emp 0.343 0.057 0.012 0.004 0.002 0.000

transitivity 0.220 HK1 0.999 0.992 0.971 0.938 0.907 0.847
HK2 0.998 0.984 0.963 0.933 0.901 0.831
HNN1 0.986 0.937 0.838 0.785 0.739 0.665
emp 0.992 0.966 0.897 0.839 0.800 0.703

300 λ1 50.535 HK1 0.995 0.959 0.918 0.876 0.836 0.739
HK2 0.994 0.958 0.923 0.889 0.859 0.765
HNN1 0.936 0.847 0.724 0.647 0.597 0.509
emp 0.990 0.953 0.900 0.859 0.824 0.733

λ2 11.778 HK1 0.000 0.000 0.000 0.000 0.000 0.000
HK2 0.001 0.000 0.000 0.000 0.000 0.000
HNN1 0.978 0.915 0.857 0.814 0.754 0.651
emp 0.000 0.000 0.000 0.000 0.000 0.000

transitivity 0.221 HK1 0.997 0.982 0.940 0.897 0.859 0.759
HK2 0.996 0.984 0.954 0.904 0.860 0.782
HNN1 0.981 0.919 0.872 0.823 0.747 0.629
emp 0.988 0.947 0.897 0.847 0.781 0.678

500 λ1 83.925 HK1 0.983 0.955 0.904 0.849 0.782 0.680
HK2 0.986 0.944 0.902 0.858 0.791 0.701
HNN1 0.950 0.860 0.773 0.682 0.633 0.534
emp 0.981 0.937 0.888 0.851 0.817 0.708

λ2 15.448 HK1 0.000 0.000 0.000 0.000 0.000 0.000
HK2 0.000 0.000 0.000 0.000 0.000 0.000
HNN1 0.982 0.915 0.854 0.814 0.753 0.658
emp 0.000 0.000 0.000 0.000 0.000 0.000

transitivity 0.222 HK1 0.986 0.945 0.899 0.867 0.814 0.708
HK2 0.987 0.956 0.911 0.851 0.812 0.734
HNN1 0.982 0.920 0.838 0.780 0.734 0.630
emp 0.982 0.968 0.905 0.837 0.772 0.692

Table 7: Confidence interval coverage based on Monte Carlo simulations for different bootstrap methods for the true
graphs from the product generating function with density ρn = 0.125, S = 1000 true graphs, with sample size n
ranging from 100 to 500. The methods are: HK1 (our main method based on ĥ ≡ ĥ(K1) with a(opt)), HK2 (our

bootstrap method but using the linking function estimator ĥ(K2) with a(optK2) based on ĥ(K2) ), HNN1 (our bootstrap

method but but using the linking function estimator ĥ(NN1) from Zhang, Levina, and Zhu (2017) with their optimal
choice of neighbourhood size), emp (empirical bootstrap from Green and Shalizi (2022)), dot prod k (the bootstrap
method from Levin and Levina (2019) based on assuming a k-dimensional ξi).
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Proportion of bootstrap CI that cover truth for
α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

statistic n average for true graphs method

density 250 0.160767 HK1 0.991 0.959 0.914 0.874 0.823 0.736
HK2 0.993 0.956 0.908 0.868 0.826 0.721
HNN1 0.981 0.914 0.873 0.818 0.762 0.636
LLS L 1.000 1.000 1.000 0.999 0.999 0.990
asymp estimated var 0.993 0.973 0.948 0.909 0.864 0.781
asymp infeasible var 0.990 0.943 0.895 0.846 0.795 0.701
dot prod 1 1.000 0.999 0.998 0.990 0.973 0.913
dot prod 3 1.000 0.999 0.998 0.991 0.967 0.906
emp 0.990 0.961 0.910 0.871 0.828 0.742

500 0.139211 HK1 0.993 0.955 0.889 0.827 0.771 0.672
HK2 0.993 0.954 0.872 0.816 0.753 0.667
HNN1 0.987 0.896 0.795 0.730 0.675 0.590
asymp estimated var 0.998 0.978 0.948 0.907 0.868 0.770
asymp infeasible var 0.993 0.952 0.900 0.855 0.797 0.676
dot prod 1 1.000 1.000 0.996 0.988 0.979 0.920
dot prod 3 1.000 1.000 0.997 0.991 0.985 0.936
emp 0.991 0.942 0.891 0.841 0.784 0.677

750 0.127979 HK1 0.979 0.937 0.877 0.842 0.788 0.684
HK2 0.973 0.928 0.873 0.824 0.774 0.665
HNN1 0.944 0.866 0.775 0.721 0.659 0.556
asymp estimated var 0.994 0.980 0.953 0.914 0.883 0.799
asymp infeasible var 0.989 0.948 0.901 0.852 0.803 0.704
dot prod 1 1.000 0.999 0.993 0.982 0.964 0.920
dot prod 3 1.000 0.999 0.993 0.982 0.965 0.923
emp 0.978 0.933 0.887 0.835 0.795 0.691

triangle 250 0.009854 HK1 0.990 0.969 0.942 0.886 0.852 0.745
density HK2 0.990 0.974 0.941 0.902 0.869 0.749

HNN1 0.990 0.946 0.902 0.839 0.788 0.675
LLS L 1.000 0.999 0.995 0.983 0.968 0.925
LLS Q 1.000 0.999 0.995 0.983 0.966 0.923
asymp infeasible var 0.987 0.953 0.905 0.852 0.794 0.697
dot prod 1 1.000 0.999 0.997 0.983 0.975 0.930
dot prod 3 1.000 0.999 0.999 0.983 0.976 0.933
emp 0.994 0.966 0.935 0.871 0.821 0.732

500 0.006402 HK1 0.991 0.959 0.902 0.840 0.794 0.692
HK2 0.997 0.960 0.896 0.847 0.790 0.700
HNN1 0.986 0.929 0.826 0.760 0.704 0.606
asymp infeasible var 0.993 0.951 0.889 0.852 0.797 0.695
dot prod 1 1.000 1.000 0.997 0.987 0.970 0.911
dot prod 3 1.000 1.000 0.998 0.993 0.973 0.921
emp 0.996 0.951 0.882 0.839 0.789 0.692

750 0.004970 HK1 0.987 0.946 0.898 0.854 0.805 0.695
HK2 0.987 0.943 0.892 0.852 0.793 0.697
HNN1 0.962 0.904 0.820 0.752 0.703 0.598
asymp infeasible var 0.987 0.940 0.900 0.852 0.803 0.703
dot prod 1 1.000 1.000 0.995 0.985 0.965 0.919
dot prod 3 1.000 1.000 0.995 0.985 0.967 0.922
emp 0.977 0.938 0.900 0.841 0.804 0.709

Table 8: Confidence interval coverage based on Monte Carlo simulations for different bootstrap methods for the

true graphs from the product generating function with density ρn ∼ 4

√
log(n)
n , S = 1000 true graphs. The methods

are: HK1 (our main method based on ĥ ≡ ĥ(K1) with a(opt)), HK2 (our bootstrap method but using the linking

function estimator ĥ(K2) with a(optK2) based on ĥ(K2) ), HNN1 (our bootstrap method but but using the linking

function estimator ĥ(NN1) from Zhang, Levina, and Zhu (2017) with their optimal choice of neighbourhood size),
emp (empirical bootstrap from Green and Shalizi (2022)), dot prod k (the bootstrap method from Levin and Levina
(2019) based on assuming a k-dimensional ξi), asymp estimated var (the asymptotic distribution from Bickel, Chen,
and Levina (2011) with variance estimated according to the formula in Green and Shalizi (2022)), asymp infeasible
var (the asymptotic distribution from Bickel, Chen, and Levina (2011) with the true theoretical variance), LLS L and
LLS Q (the linear and quadratic methods from Lin, Lunde, and Sarkar (2020)).
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average for Proportion of bootstrap CI that cover truth for
ρn statistic true graphs method α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

0.056 density 0.056 HK1 0.989 0.927 0.864 0.786 0.721 0.634
HK2 0.968 0.825 0.654 0.514 0.419 0.346
HNN1 0.253 0.066 0.034 0.017 0.005 0.001
dot prod 1 0.005 0.000 0.000 0.000 0.000 0.000
dot prod 3 1.000 0.998 0.985 0.973 0.955 0.901
emp 0.999 0.985 0.960 0.920 0.875 0.800

λ1 32.530 HK1 0.988 0.968 0.931 0.866 0.820 0.722
HK2 0.996 0.977 0.945 0.898 0.849 0.767
HNN1 0.925 0.751 0.631 0.522 0.440 0.332
emp 0.979 0.925 0.871 0.813 0.763 0.669

λ2 21.481 HK1 0.997 0.957 0.903 0.860 0.827 0.729
HK2 0.991 0.911 0.807 0.748 0.686 0.589
HNN1 0.970 0.845 0.696 0.585 0.507 0.409
emp 0.935 0.811 0.694 0.631 0.560 0.480

transitivity 0.073 HK1 0.997 0.938 0.890 0.848 0.800 0.672
HK2 0.970 0.930 0.867 0.826 0.781 0.688
HNN1 0.966 0.901 0.818 0.767 0.702 0.590
emp 0.993 0.956 0.904 0.851 0.786 0.692

0.084 density 0.084 HK1 0.990 0.953 0.914 0.874 0.833 0.722
HK2 0.990 0.950 0.909 0.861 0.794 0.650
HNN1 0.910 0.854 0.732 0.619 0.563 0.436
dot prod 1 0.000 0.000 0.000 0.000 0.000 0.000
dot prod 3 0.999 0.996 0.987 0.970 0.948 0.903
emp 0.996 0.986 0.957 0.914 0.875 0.797

λ1 48.240 HK1 0.997 0.971 0.912 0.863 0.817 0.705
HK2 0.998 0.976 0.934 0.875 0.821 0.721
HNN1 0.973 0.919 0.843 0.809 0.760 0.638
emp 0.997 0.967 0.900 0.837 0.786 0.681

λ2 31.542 HK1 0.996 0.971 0.931 0.876 0.827 0.730
HK2 0.993 0.951 0.896 0.854 0.797 0.672
HNN1 0.989 0.959 0.902 0.834 0.805 0.694
emp 0.991 0.941 0.876 0.824 0.780 0.663

transitivity 0.110 HK1 0.997 0.949 0.886 0.825 0.779 0.669
HK2 0.996 0.950 0.896 0.845 0.796 0.702
HNN1 0.955 0.885 0.814 0.761 0.688 0.578
emp 0.998 0.965 0.922 0.874 0.819 0.738

0.113 density 0.113 HK1 0.993 0.975 0.922 0.866 0.823 0.732
HK2 0.989 0.970 0.914 0.869 0.829 0.718
HNN1 0.990 0.937 0.875 0.827 0.777 0.661
dot prod 1 0.000 0.000 0.000 0.000 0.000 0.000
dot prod 3 1.000 0.993 0.985 0.975 0.958 0.898
emp 0.993 0.982 0.955 0.918 0.870 0.792

λ1 63.879 HK1 0.997 0.968 0.908 0.856 0.781 0.662
HK2 1.000 0.973 0.916 0.874 0.807 0.690
HNN1 0.989 0.937 0.879 0.789 0.738 0.654
emp 0.993 0.958 0.899 0.839 0.798 0.693

λ2 41.713 HK1 0.994 0.961 0.909 0.855 0.810 0.694
HK2 0.994 0.941 0.898 0.845 0.793 0.697
HNN1 0.988 0.955 0.901 0.857 0.799 0.686
emp 0.994 0.945 0.883 0.814 0.749 0.643

transitivity 0.147 HK1 0.996 0.956 0.895 0.820 0.766 0.672
HK2 1.000 0.957 0.902 0.837 0.784 0.661
HNN1 0.956 0.846 0.771 0.694 0.655 0.550
emp 0.989 0.944 0.891 0.846 0.792 0.682

Table 9: Confidence interval coverage based on Monte Carlo simulations for different bootstrap methods for the true
graphs from the horseshoe generating function with sample size n = 500, S = 1000 true graphs, and different values
of density ρn ranging from 0.056 to 0.1125. The methods are: HK1 (our main method based on ĥ ≡ ĥ(K1) with a(opt)),

HK2 (our bootstrap method but using the linking function estimator ĥ(K2) with a(optK2) based on ĥ(K2) ), HNN1

(our bootstrap method but but using the linking function estimator ĥ(NN1) from Zhang, Levina, and Zhu (2017) with
their optimal choice of neighbourhood size), emp (empirical bootstrap from Green and Shalizi (2022)), dot prod k
(the bootstrap method from Levin and Levina (2019) based on assuming a k-dimensional ξi).
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average for Proportion of bootstrap CI that cover truth for
ρn statistic true graphs method α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

0.380 density 0.380 HK1 0.998 0.984 0.964 0.928 0.879 0.800
HK2 0.995 0.978 0.954 0.931 0.888 0.795
HNN1 0.982 0.921 0.859 0.783 0.735 0.643
dot prod 1 1.000 0.996 0.987 0.975 0.948 0.873
dot prod 3 1.000 0.996 0.986 0.973 0.944 0.873
emp 0.998 0.983 0.948 0.932 0.885 0.772

λ1 114.861 HK1 0.994 0.964 0.937 0.892 0.851 0.777
HK2 0.999 0.970 0.939 0.907 0.869 0.793
HNN1 0.990 0.973 0.926 0.878 0.834 0.728
emp 1.000 0.984 0.957 0.935 0.902 0.817

λ2 15.962 HK1 0.000 0.000 0.000 0.000 0.000 0.000
HK2 0.000 0.000 0.000 0.000 0.000 0.000
HNN1 1.000 0.992 0.980 0.952 0.929 0.847
emp 0.000 0.000 0.000 0.000 0.000 0.000

transitivity 0.384 HK1 0.994 0.973 0.937 0.902 0.868 0.786
HK2 1.000 0.981 0.937 0.897 0.859 0.775
HNN1 0.997 0.973 0.948 0.915 0.880 0.774
emp 0.998 0.973 0.888 0.839 0.778 0.694

0.570 density 0.570 HK1 0.994 0.969 0.945 0.904 0.849 0.756
HK2 0.993 0.973 0.923 0.882 0.827 0.713
HNN1 0.994 0.964 0.926 0.889 0.836 0.731
dot prod 1 1.000 0.996 0.991 0.973 0.947 0.886
dot prod 3 1.000 0.996 0.987 0.963 0.939 0.857
emp 0.991 0.945 0.915 0.863 0.814 0.723

λ1 171.787 HK1 0.999 0.978 0.941 0.905 0.852 0.767
HK2 0.999 0.978 0.941 0.900 0.857 0.779
HNN1 0.990 0.972 0.939 0.884 0.838 0.740
emp 0.990 0.971 0.937 0.887 0.850 0.757

λ2 15.963 HK1 0.000 0.000 0.000 0.000 0.000 0.000
HK2 0.000 0.000 0.000 0.000 0.000 0.000
HNN1 1.000 0.993 0.977 0.949 0.895 0.832
emp 0.000 0.000 0.000 0.000 0.000 0.000

transitivity 0.576 HK1 0.998 0.979 0.934 0.908 0.864 0.770
HK2 0.997 0.978 0.940 0.902 0.867 0.776
HNN1 0.987 0.969 0.920 0.877 0.830 0.730
emp 0.985 0.938 0.891 0.819 0.787 0.652

0.759 density 0.759 HK1 0.994 0.963 0.911 0.872 0.841 0.737
HK2 0.992 0.961 0.919 0.870 0.825 0.747
HNN1 0.986 0.942 0.902 0.859 0.809 0.694
dot prod 1 1.000 0.998 0.990 0.975 0.945 0.881
dot prod 3 1.000 0.997 0.986 0.959 0.922 0.850
emp 0.985 0.947 0.890 0.835 0.810 0.706

λ1 228.714 HK1 0.996 0.965 0.926 0.884 0.842 0.731
HK2 0.993 0.959 0.926 0.877 0.841 0.734
HNN1 0.991 0.962 0.931 0.865 0.819 0.702
emp 0.983 0.953 0.914 0.864 0.813 0.702

λ2 13.730 HK1 0.020 0.000 0.000 0.000 0.000 0.000
HK2 0.978 0.817 0.615 0.498 0.379 0.217
HNN1 0.999 0.988 0.965 0.932 0.892 0.784
emp 0.000 0.000 0.000 0.000 0.000 0.000

transitivity 0.768 HK1 0.994 0.961 0.916 0.885 0.833 0.720
HK2 0.993 0.961 0.916 0.886 0.829 0.732
HNN1 0.992 0.965 0.932 0.864 0.815 0.712
emp 0.970 0.920 0.872 0.814 0.776 0.643

Table 10: Confidence interval coverage based on Monte Carlo simulations for different bootstrap methods for the true
graphs from the high density generating function with sample size n = 300, S = 1000 true graphs, and different values
of density ρn ranging from 0.38 to 0.79. The methods are: HK1 (our main method based on ĥ ≡ ĥ(K1) with a(opt)),

HK2 (our bootstrap method but using the linking function estimator ĥ(K2) with a(optK2) based on ĥ(K2) ), HNN1

(our bootstrap method but but using the linking function estimator ĥ(NN1) from Zhang, Levina, and Zhu (2017) with
their optimal choice of neighbourhood size), emp (empirical bootstrap from Green and Shalizi (2022)), dot prod k
(the bootstrap method from Levin and Levina (2019) based on assuming a k-dimensional ξi).
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Proportion of bootstrap CI that cover truth for

true value c average a(opt) α=0.01 α=0.05 α=0.1 α=0.15 α=0.2 α=0.3

0.1109 0.10 1.045577e-06 0.990 0.962 0.936 0.857 0.818 0.736
0.25 2.613943e-06 0.997 0.987 0.949 0.913 0.862 0.783
0.50 5.227885e-06 0.999 0.984 0.956 0.927 0.887 0.790
0.75 7.841828e-06 0.995 0.976 0.950 0.912 0.865 0.767
0.90 9.410194e-06 0.999 0.987 0.961 0.926 0.880 0.778
1.00 1.045577e-05 0.996 0.989 0.961 0.947 0.912 0.834
1.10 1.150135e-05 0.999 0.985 0.971 0.948 0.912 0.829
1.25 1.306971e-05 0.998 0.979 0.947 0.913 0.842 0.743
2 2.091154e-05 0.477 0.223 0.117 0.071 0.051 0.032
4 4.182308e-05 0.000 0.000 0.000 0.000 0.000 0.000
10 1.045577e-04 0.000 0.000 0.000 0.000 0.000 0.000

0.2218 0.10 3.524835e-06 0.987 0.941 0.886 0.849 0.791 0.704
0.25 8.812088e-06 0.997 0.956 0.908 0.862 0.826 0.715
0.50 1.762418e-05 0.996 0.973 0.926 0.903 0.853 0.771
0.75 2.643626e-05 0.993 0.953 0.913 0.878 0.806 0.713
0.90 3.172352e-05 0.984 0.955 0.930 0.903 0.869 0.769
1.00 3.524835e-05 0.995 0.969 0.947 0.905 0.856 0.745
1.10 3.877319e-05 0.991 0.959 0.941 0.891 0.850 0.743
1.25 4.406044e-05 0.995 0.968 0.940 0.900 0.860 0.763
2 7.049670e-05 0.992 0.939 0.883 0.819 0.768 0.691
4 1.409934e-04 0.785 0.473 0.390 0.317 0.258 0.171
10 3.524835e-04 0.012 0.003 0.002 0.000 0.000 0.000

0.3327 0.10 5.842118e-06 0.990 0.935 0.883 0.837 0.784 0.676
0.25 1.460529e-05 0.974 0.935 0.881 0.816 0.769 0.667
0.50 2.921059e-05 0.991 0.968 0.909 0.865 0.802 0.674
0.75 4.381588e-05 0.992 0.966 0.927 0.893 0.834 0.722
0.90 5.257906e-05 0.990 0.956 0.907 0.873 0.830 0.700
1.00 5.842118e-05 0.991 0.958 0.921 0.874 0.829 0.716
1.10 6.426330e-05 0.993 0.965 0.929 0.881 0.835 0.720
1.25 7.302647e-05 0.993 0.955 0.899 0.868 0.818 0.690
2 1.168424e-04 0.990 0.955 0.923 0.876 0.824 0.710
4 2.336847e-04 0.969 0.917 0.854 0.808 0.739 0.647
10 5.842118e-04 0.732 0.509 0.384 0.312 0.277 0.195

0.4436 0.10 7.561251e-06 0.995 0.955 0.903 0.852 0.788 0.708
0.25 1.890313e-05 0.994 0.954 0.903 0.852 0.805 0.719
0.50 3.780625e-05 0.990 0.949 0.894 0.857 0.823 0.722
0.75 5.670938e-05 0.994 0.969 0.921 0.853 0.811 0.712
0.90 6.805126e-05 0.993 0.962 0.900 0.862 0.839 0.763
1.00 7.561251e-05 0.991 0.954 0.887 0.848 0.803 0.691
1.10 8.317376e-05 0.986 0.948 0.899 0.861 0.820 0.715
1.25 9.451564e-05 0.990 0.952 0.906 0.868 0.830 0.749
2 1.512250e-04 0.989 0.937 0.884 0.849 0.806 0.715
4 3.024500e-04 0.989 0.955 0.911 0.851 0.796 0.707
10 7.561251e-04 0.951 0.875 0.792 0.731 0.673 0.573

Table 11: Confidence interval coverage for transitivity at different bandwidths c× a(opt) and at different densities ρn,
based on Monte Carlo simulations using the product generating function when n = 500 and S = 1000.
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Proportion of bootstrap CI that cover truth for

ρn c average a(opt) α=0.01 α=0.05 α=0.1 α=0.15 α=0.2 α=0.3

0.028125 0.01 1.402691e-08 1.000 0.991 0.979 0.962 0.935 0.854
0.10 1.402691e-07 1.000 0.988 0.976 0.960 0.931 0.843
0.25 3.506728e-07 1.000 0.992 0.978 0.965 0.944 0.870
0.50 7.013456e-07 0.999 0.989 0.970 0.949 0.918 0.842
0.75 1.052018e-06 0.999 0.945 0.884 0.831 0.778 0.666
0.90 1.262422e-06 0.986 0.831 0.733 0.570 0.450 0.317
1.00 1.402691e-06 0.853 0.538 0.370 0.256 0.194 0.102
1.10 1.542960e-06 0.687 0.325 0.174 0.105 0.064 0.025
1.25 1.753364e-06 0.355 0.092 0.026 0.008 0.005 0.001
2 2.805383e-06 0.000 0.000 0.000 0.000 0.000 0.000
4 5.610765e-06 0.020 0.005 0.001 0.000 0.000 0.000
10 1.402691e-05 0.853 0.706 0.593 0.519 0.457 0.379
20 2.805383e-05 0.979 0.931 0.848 0.796 0.746 0.634
100 1.402691e-04 0.981 0.949 0.887 0.829 0.755 0.658

0.056250 0.01 6.201768e-08 0.997 0.985 0.964 0.921 0.887 0.807
0.10 6.201768e-07 0.997 0.984 0.957 0.929 0.877 0.799
0.25 1.550442e-06 0.998 0.979 0.956 0.926 0.883 0.789
0.50 3.100884e-06 0.997 0.988 0.966 0.931 0.897 0.808
0.75 4.651326e-06 0.997 0.983 0.958 0.916 0.880 0.800
0.90 5.581592e-06 0.996 0.969 0.930 0.856 0.810 0.704
1.00 6.201768e-06 0.985 0.930 0.864 0.806 0.751 0.647
1.10 6.821945e-06 0.986 0.876 0.799 0.720 0.654 0.543
1.25 7.752210e-06 0.939 0.814 0.720 0.610 0.502 0.313
2 1.240354e-05 0.835 0.465 0.268 0.185 0.126 0.067
4 2.480707e-05 0.641 0.363 0.202 0.139 0.111 0.067
10 6.201768e-05 0.767 0.638 0.525 0.466 0.428 0.343
20 1.240354e-04 0.930 0.825 0.771 0.702 0.657 0.577
100 6.201768e-04 0.969 0.871 0.802 0.745 0.698 0.599

0.084375 0.01 1.469518e-07 0.997 0.982 0.947 0.917 0.867 0.774
0.10 1.469518e-06 0.992 0.977 0.947 0.910 0.867 0.764
0.25 3.673796e-06 0.992 0.977 0.950 0.922 0.886 0.792
0.50 7.347591e-06 0.995 0.984 0.945 0.909 0.861 0.787
0.75 1.102139e-05 0.992 0.980 0.953 0.918 0.882 0.774
0.90 1.322566e-05 0.988 0.959 0.933 0.888 0.835 0.723
1.00 1.469518e-05 0.992 0.965 0.933 0.900 0.849 0.750
1.10 1.616470e-05 0.982 0.943 0.906 0.857 0.786 0.695
1.25 1.836898e-05 0.990 0.953 0.903 0.813 0.772 0.653
2 2.939036e-05 0.982 0.920 0.819 0.766 0.705 0.593
4 5.878073e-05 0.965 0.862 0.741 0.666 0.610 0.439
10 1.469518e-04 0.829 0.668 0.581 0.485 0.412 0.323
20 2.939036e-04 0.902 0.783 0.722 0.655 0.607 0.520
100 1.469518e-03 0.944 0.852 0.784 0.718 0.666 0.550

0.112500 0.01 3.076687e-07 0.997 0.978 0.926 0.885 0.850 0.744
0.10 3.076687e-06 0.997 0.961 0.926 0.885 0.845 0.732
0.25 7.691717e-06 1.000 0.967 0.923 0.882 0.847 0.754
0.50 1.538343e-05 0.997 0.971 0.927 0.891 0.849 0.731
0.75 2.307515e-05 0.997 0.964 0.925 0.884 0.844 0.740
0.90 2.769018e-05 0.994 0.966 0.921 0.884 0.849 0.741
1.00 3.076687e-05 0.996 0.954 0.911 0.871 0.823 0.738
1.10 3.384355e-05 0.997 0.960 0.911 0.878 0.809 0.725
1.25 3.845858e-05 0.996 0.949 0.904 0.861 0.792 0.715
2 6.153373e-05 0.992 0.951 0.894 0.850 0.806 0.714
4 1.230675e-04 0.987 0.933 0.866 0.805 0.748 0.657
10 3.076687e-04 0.884 0.729 0.634 0.555 0.499 0.418
20 6.153373e-04 0.843 0.773 0.679 0.604 0.529 0.462
100 3.076687e-03 0.909 0.823 0.760 0.673 0.626 0.525

Table 12: Confidence interval coverage for density at different bandwidths c×a(opt) and at different densities ρn, based
on Monte Carlo simulations using the horseshoe generating function when n = 500 and S = 1000.
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Proportion of bootstrap CI that cover truth for

ρn c average a(opt) α=0.01 α=0.05 α=0.1 α=0.15 α=0.2 α=0.3

0.37950 0.001 9.252546e-08 0.000 0.000 0.000 0.000 0.000 0.000
0.01 9.252546e-07 0.000 0.000 0.000 0.000 0.000 0.000
0.1 9.257237e-06 0.000 0.000 0.000 0.000 0.000 0.000
0.25 2.314309e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.5 4.628619e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.75 6.942928e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.9 8.331514e-05 0.000 0.000 0.000 0.000 0.000 0.000
1 9.257237e-05 0.000 0.000 0.000 0.000 0.000 0.000
1.1 1.018296e-04 0.000 0.000 0.000 0.000 0.000 0.000
1.25 1.157155e-04 0.000 0.000 0.000 0.000 0.000 0.000
2 1.851447e-04 1.000 0.990 0.983 0.956 0.920 0.852
4 3.702895e-04 0.999 0.993 0.981 0.953 0.897 0.820
10 9.257237e-04 0.999 0.987 0.941 0.896 0.845 0.765
100 9.252546e-03 0.997 0.959 0.899 0.828 0.773 0.661
1000 9.252546e-02 0.997 0.955 0.899 0.833 0.791 0.668

0.56925 0.001 1.108253e-07 0.000 0.000 0.000 0.000 0.000 0.000
0.01 1.108253e-06 0.000 0.000 0.000 0.000 0.000 0.000
0.1 1.107591e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.25 2.768978e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.5 5.537956e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.75 8.306935e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.9 9.968322e-05 0.000 0.000 0.000 0.000 0.000 0.000
1 1.107591e-04 0.000 0.000 0.000 0.000 0.000 0.000
1.1 1.218350e-04 0.000 0.000 0.000 0.000 0.000 0.000
1.25 1.384489e-04 0.000 0.000 0.000 0.000 0.000 0.000
2 2.215183e-04 1.000 0.990 0.974 0.956 0.936 0.853
4 4.430365e-04 0.998 0.976 0.938 0.889 0.837 0.744
10 1.107591e-03 0.983 0.931 0.842 0.771 0.705 0.585
100 1.108253e-02 0.907 0.738 0.505 0.435 0.346 0.259
1000 1.108253e-01 0.885 0.640 0.495 0.437 0.380 0.259

0.75900 0.001 9.286943e-08 0.000 0.000 0.000 0.000 0.000 0.000
0.01 9.286943e-07 0.000 0.000 0.000 0.000 0.000 0.000
0.1 9.277168e-06 0.000 0.000 0.000 0.000 0.000 0.000
0.25 2.319292e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.5 4.638584e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.75 6.957876e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.9 8.349452e-05 0.000 0.000 0.000 0.000 0.000 0.000
1 9.277168e-05 0.000 0.000 0.000 0.000 0.000 0.000
1.1 1.020489e-04 0.030 0.001 0.000 0.000 0.000 0.000
1.25 1.159646e-04 0.860 0.650 0.449 0.303 0.221 0.133
2 1.855434e-04 0.999 0.982 0.954 0.926 0.879 0.787
4 3.710867e-04 1.000 0.981 0.952 0.910 0.856 0.755
10 9.277168e-04 0.982 0.914 0.867 0.793 0.735 0.650
100 9.286943e-03 0.929 0.865 0.738 0.648 0.595 0.479
1000 9.286943e-02 0.906 0.772 0.659 0.605 0.535 0.444

Table 13: Confidence interval coverage for λ10 at different bandwidths c × a(opt) and at different densities ρn, based
on Monte Carlo simulations using the high density generating function when n = 500 and S = 1000.
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B.3 Plots

The linking functions we consider are:

Figure 12: Dot product linking function: h(ξi, ξj) = ρn × 4ξiξj .

Figure 13: Horseshoe linking function: h(ξi, ξj) = ρn × 4.44286
(
e−200(ξi−ξ2j )

2

+ e−200(ξj−ξ2i )
2)

.
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Figure 14: High-density linking function:
h(ξi, ξj) = ρn × 1.35
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C Extensions and alternative specifications

C.1 Possible extensions of application

On a technical level, one possible extension would be analysing different ways of aggregating the

twelve observed types of household interactions into the adjacency matrix. Like the original paper,

we have used the union of the twelve characteristic-specific adjacency matrices, but there are

many other possible choices, e.g. taking an intersection (this may be less desirable as it leads to

a significantly sparser network) or an average (which gives a weighted adjacency matrix). Our

method allows for comparison of the adjacency matrices achieved though different aggregating

functions and checking if they lead to different structures. For example, we can compare the

largest eigenvalues λ1 obtained for villages using different aggregating functions and check if they

have overlapping confidence intervals. If they don’t, this shows that the choice of the aggregating

function is not without loss of generality.

Another possible modification of our procedure would be estimating the linking function under

the assumption that each of the twelve characteristics is a separate draw from the Bernoulli dis-

tribution. We could redefine the distance function to depend directly on the twelve characteristics

instead of a single aggregate adjacency matrix. Let Aij denote a 12×1 vector of indicators whether

households i and j are related according to the twelve characteristics. Let ‖.‖ be some vector norm
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(e.g. max norm, min norm, Euclidean norm, or a weighted norm35). Then we can define

d
(‖.‖,2)
ij −

 1

n

n∑
t=1

(
1

n

n∑
s=1

‖diag (Ats) (Ais −Ajs)‖

)2
 1

2

where diag(v) is a diagonal matrix with diagonal entries from a vector v. To obtain the bootstrap

version of adjacency matrices A we could draw from a joint Bernoulli distribution with probabil-

ities estimated using ĥn based on the distance d
(‖.‖,2)
ij and the adjacency matrices for individual

characteristics, and a covariance matrix equal to the sample covariance between different charac-

teristics.

C.2 Sensitivity checks

We rerun the estimation for a subset of villages using 300 repetitions of the simulated information

spreading through the network to estimate the simulated moments instead of the original 75. The

outcomes (middle panel in Fig. 15) for that subsample were very similar to the outcomes based on

the original specification (left panel in Fig. 15). We conclude that 75 simulations are sufficient for

the estimation of simulated moments.

Figure 15: A comparison of the estimates of qP − qN for a subset of villages with 95% confidence
intervals based simulated moments estimated using the original specification with 75 simulations
and β estimated using all villages (left), 300 simulations and β estimated using all villages (middle),
and 75 simulations and β estimated using village-specific data only (right).

We also tried to estimate the β coefficients using village-specific data (rather than aggregating

over all villages). This did make a difference for the estimates and confidence intervals (right panel

of Fig. 15), though the conclusions remain similar. However, since the regression used to identify β

is run using only the information about the leaders, we found the sample sizes for individual villages

35. A weighted norm could be of the form ‖x‖ =
√
x′Wxx, with a weight matrix Wx that may depend on the

adjacency matrices, e.g. Wx =
(
1
n

∑n
v=1 xvx

′
v

)−1
.
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too small to give reliable estimates. Hence we chose to use aggregate β in our main simulations.

C.3 Alternative bootstrap procedure: links only

Instead of the procedure we use in the main paper, we could skip the step 2. of resampling nodes

from the original graph and go straight into resampling links according to ĥn for the original

set of nodes. The motivation for this procedure is similar to the one we use: the original sample

comes from the true data generating distribution, we have a good estimate for the distribution

of the adjacency matrix, hence the networks simulated this way should preserve the structure

of the original network. Skipping one step in the simulation simplifies the procedure, improves

computational time and would also simplify the proofs. We run some simulations using this method

and found that, unfortunately, it does not perform as well as our main approach. Table Table 14

shows the results of some of our simulations. We see that the confidence interval coverage is very

poor, other than for a few special cases where the sample size is small (n = 25, in which case the

bias is small relative to variance and the true value may still be included in the confidence interval)

or we are estimating a statistic which is relatively tricky to estimate (e.g. λ2) and hence measured

with more variation than e.g. λ1 or density.

Our hypothesis for why the performance is so poor is that if the bandwidth an is small, or if

for some individuals there are no close neighbours, our procedure becomes similar to the empirical

bootstrap of Green and Shalizi (2022): we draw a link between two individuals if and only if they

were linked in the original graph. Hence if we don’t resample individuals, the bootstrapped graph

may become too similar to the original graph, at least on the subgraphs consisting of individuals

with few neighbours. This can lead to insufficient variation in the bootstrapped graphs and worse

performance of the bootstrap procedure. Fig. 16 and Fig. 17 shows a comparison of our original

method (in blue) and the version which only resamples links while keeping the original nodes (in

orange). While both do a good job of replicating the statistic values in the bootstrapped graph

(dashed black line), the version which only resamples links is too concentrated around the value

in the bootstrapped graph and often misses the population value of the statistic (red solid line),

leading to poor confidence interval coverage of the links-only procedure.

This indicates that if one is interested in uncovering the population values, our main procedure

is more reliable. However, in applications where we are only interested in confidence intervals for

a specific sample, bootstrapping links only does provide narrower confidence intervals and would

be preferred.
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95% CI coverage for
generating function n ρn density transitivity λ1 λ2

high density 25 0.379500 0.803 0.848 0.791 0.978
0.569250 0.803 0.788 0.776 0.979
0.759000 0.755 0.730 0.752 0.973

100 0.379500 0.541 0.537 0.495 0.824
0.569250 0.509 0.554 0.528 0.925
0.759000 0.532 0.518 0.529 0.963

300 0.379500 0.168 0.144 0.156 0.662
0.569250 0.211 0.222 0.227 0.824
0.759000 0.340 0.337 0.339 0.947

500 0.379500 0.068 0.059 0.058 0.410
0.569250 0.087 0.110 0.092 0.673
0.759000 0.251 0.282 0.260 0.950

horseshoe 25 0.056250 0.727 0.920 0.838 0.956
0.084375 0.776 0.910 0.770 0.936
0.112500 0.745 0.757 0.715 0.916

100 0.056250 0.530 0.520 0.406 0.819
0.084375 0.616 0.419 0.387 0.717
0.112500 0.686 0.365 0.359 0.679

200 0.056250 0.430 0.344 0.243 0.659
0.084375 0.585 0.308 0.302 0.606
0.112500 0.592 0.270 0.287 0.501

300 0.056250 0.433 0.285 0.215 0.575
0.084375 0.589 0.266 0.227 0.504
0.112500 0.568 0.237 0.240 0.460

500 0.056250 0.407 0.213 0.158 0.498
0.084375 0.530 0.215 0.221 0.413
0.112500 0.490 0.217 0.218 0.326

product 25 0.125000 0.562 0.907 0.652 0.911
0.250000 0.484 0.785 0.513 0.963

100 0.125000 0.331 0.567 0.366 0.887
0.250000 0.263 0.423 0.298 0.957

300 0.125000 0.203 0.253 0.164 0.867
0.250000 0.124 0.177 0.136 0.914

500 0.125000 0.156 0.165 0.140 0.836
0.250000 0.089 0.126 0.090 0.865

Table 14: 95% confidence interval coverage for density, transitivity, λ1 and λ2 for different generat-
ing functions, different sample sizes n from 25 ot 500 and at different densities ρn, based on Monte
Carlo simulations using a version of the algorithm which keeps the original set of nodes and only
resamples the links between them.
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Figure 16: Comparison of histograms for our main bootstrap approach (in blue) and for the links-
only version (in orange) from estimation of one specific network from the horseshoe generating
function with n = 300 and ρn = 0.1125. The estimated statistics are, from top to bottom: density,
transitivity, λ1 and λ2. The red solid line denotes the population true value of the statistic while
the black dashed line denotes the value of the statistic in the bootstrapped graph.
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Figure 17: Comparison of histograms for our main bootstrap approach (in blue) and for the links-
only version (in orange) from estimation of one specific network from the horseshoe generating
function with n = 50 and ρn = 0.05625. The estimated statistics are, from top to bottom: density,
transitivity, λ1 and λ2. The red solid line denotes the population true value of the statistic while
the black dashed line denotes the value of the statistic in the bootstrapped graph.
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