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Abstract

We propose a procedure for testing whether a nonparametric regression mean satisfies
a shape restriction that varies within the domain of the regressor. Notably, the change
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1 Introduction

This paper suggests a nonparametric procedure for testing shape constraints of the regression

mean when the shape changes within the domain of the regressor. We allow the shape to po-

tentially change not just once but multiple times. In economics and other disciplines changing

shape patterns are encountered frequently. There is sizable empirical literature analyzing or at-

tempting to establish U-shaped or hump-shaped relations. S-shape relations are also frequently

encountered in economics in the context of poverty traps or innovations. If U-shapes can be

described as changing a shape pattern only once in the domain – from decreasing to increasing,

the S-shapes in a certain interpretation may involve a more complicated characterization as there

are not just three different monotonicity patterns (down, then up, then down again) but also a

switch from convex to concave.

A common empirical practice in cases of U-shapes or hump-shapes has often relied on quadratics

despite some recognizing a potential need for nonparametric approaches1. The use of quadratic

specifications, however, remain a widespread practice. It is intuitive why – quadratics may be

appealing to researchers due to the simplicity of interpretation and ability to model both convex

and concave responses. It is evident, however, that just using quadratics is a restrictive way to

model nonlinearities, as: (a) it imposes symmetry around the turning point; (b) it has to be

concave (convex) everywhere; (c) if it is concave (convex), it first has to decrease (increase) and

then increase (decrease). In reality, nonlinear relationships may be much more complicated than

that. We refer the reader to Appendix A, where we present examples of nonlinear relationship

which will be either completely missed or largely misrepresented by the use of quadratics. This

will be further confirmed and illustrated in our applications. We believe that the main reason why

applied researchers have relied extensively on quadratic specifications has been the absence of a

unifying nonparametric methodology that can be used for estimation and testing of nonlinear

shapes in a variety of models, including partially linear models. This is precisely where our paper

makes its contribution.

Some important and welcome developments in the context of U-shaped or inverse U-shaped

relations have been made in the work of Lind and Mehlum (2010), Simonsohn (2018), Kostyshak

(2017) and Ganz (2024). These works are discussed in more detail below. Komarova and Hidalgo

1. E.g., nonparametric fits for some of their specification were explored in Aghion, Van Reenen, and Zingales
(2013) through their Lowess smoother in Figure 1, or Ashraf and Galor (2013) nonparametric fit in Figure 3, or
Aghion et al. (2005) spline fit in Figure II.
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(2023) discuss U-shapes and S-shapes as some of the applications of their method but they rely

on the shape changing point(s) to be known which may be unrealistic in practice. Even though

this paper builds to a certain extent on the methodology in Komarova and Hidalgo (2023), it

makes an important step forward in allowing the turning points to be unknown. This implies the

needs to estimate them and incorporate the extra estimation steps into the testing methodology,

which is a nutshell description of the contributions of our paper. Our extension of the method in

Komarova and Hidalgo (2023) is far from trivial. Theoretically, we have to make sure that the

turning points are estimated in a way that their interference with the statistical properties of the

test statistics is limited in a sample and is also asymptotically negligible. Practically, allowing the

turning points to be found adaptively from the data adds robustness to the hypothesis testing

and credibility to the conclusions from the test. It is worth emphasizing that our testing method

applies to a very general class of regression function changing shapes which goes beyond just

U-shapes and S-shapes. Additionally, our paper allows we make it explicit how to apply the

testing methodology to partially linear model where the shape constraints enter through the

nonparametric part and the effect of other variables is allowed through a linear index.

The paper proceeds as follows. Section 2 gives a literature review. Section 3 discusses the basic

setting with one change in shape and, thus, one turning point and gives a brief overview of our

testing methodology. The case of just one change in the shape of the function will be our leading

examples throughout sections 3-5. Section 5 describes our testing approach in detail. Section 6

discussed extension such as (a) allowing for many changes in the shape of the function and, thus,

for multiple turning point (b) controlling for other regressors in a linear way. Section 7 presents

Monte Carlo simulations. Section 8 contains applications. Section 10 concludes.

2 Literature review

Even though there is no general approach in the literature to estimate and test regression shape

changes for various shapes, there is some literature that attempts to address some special cases

of this, such as U-shapes and hump-shapes.

The existing literature on testing U-shape constraints is relatively small. Although the shape

appears in many settings in economics and social sciences, researchers usually use tests based on

quadratic specification. Lind and Mehlum (2010), Simonsohn (2018) and Kostyshak (2017) all

give compelling arguments for why tests based on quadratic approximations are not appropriate
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when testing for a U-shaped or hump-shaped relationship.

Lind and Mehlum (2010) was the first to explicitly highlight the problems with using “U-shaped”

and “quadratic” as synonyms. It proposes a joint inequality test on the signs of first derivatives

estimated at two points in the support. It’s a parametric test and it relies on knowing the

true functional form. As pointed out by Simonsohn (2018), that test is only valid if the correct

functional form is used and is likely to suffer from a high false-positive rate when the model is

misspecified.

Simonsohn (2018) proposes a simple test based on estimating two regression lines: for low and

high values. He does not assume any functional form but instead tests if the average slope on

either side of a switch point is significant, and if the slopes have opposite signs. The switch point

is estimated from the data and is chosen to maximise the power of the test (instead of getting

the best fit for the data like in our paper) using what the paper calls a “Robin Hood” algorithm,

for it takes away observations from the more powerful line and assigns them to the less powerful

one. This test is simple to use but it does have some drawbacks: it does not distinguish between

single and multiple changes in the sign of derivative (would classify a W-shape or an N-shape as a

U-shape) and its asymptotic properties have not been analysed. In particular, the implication of

estimating the switch point to maximize power rather than fit the data are not clear (potentially,

this may result in high Type I error).

Kostyshak (2017) uses a non-parametric test, where the test statistic is the smallest bandwidth

such that a local polynomial regression is quasi-convex (i.e. U-shaped or monotone), followed

by a test for monotonicity. This specification allows for the switch point to be unknown and

for the presence of covariates, just like in our model. The test statistic is consistent but further

asymptotic theory of the test is not provided. The testing algorithm relies on bootstrap (our test

has a nice asymptotic distribution, but to improve the finite sample performance of our test we

also resort to bootstrap in this paper). Kostyshak (2017) applies his test to life satisfaction in

age and finds that much of the U-shape can be explained by the increase in financial satisfaction

typically occurring later in life. A very interesting aspect of that application is that this finding

would be completely missed by quadratic specifications. This resonates with our applications

too, where we show that a quadratic specification may completely miss a U-shaped or hump-

shaped relation. It appears that the idea of the test in Kostyshak (2017) may be extended to

other shapes and multiple switch points by relying on more general tests for the number of peaks

and valleys in the regression function and its derivatives, but it would require running a series
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of tests instead of a single test, and would give a researcher less control over the exact choice of

a shape than our method.

An approach in a recent work Ganz (2024) is also designed towards testing for U-shape/inverse U-

shape relations. The regression function is modeled using linear (first-degree) splines or quadratic

I-splines and a candidate switch point is taken as one of the knots (in our approach the switch

point is adaptively found first and then the system of knots is driven by the estimated switch

point). The idea of Ganz (2024) is to estimate three models – one model is very flexible (not

enforcing any constraints), the second one estimates a monotonic relationship, and the third one

permits one switch point in line with an (inverse) U-shape relationship. If the fit of the first model

is close to that of the third and better than the second, we conclude the relation is (inverse)

U-shaped, otherwise we reject the (inverse) U-shaped relation. While the procedure performs

well in simulations, the formal statistical properties of this test have not yet been established. It

seems that, to ensure a flexible choice of switch point, the number of knots must increase with

the sample size, but it is not clear how this affects the asymptotic behaviour of the test.

For more complex changing shapes – those beyond (inverse) U-shapes – to the best of our

knowledge, there are no existing statistical testing procedures that allow unknown switch points

(Komarova and Hidalgo (2023) can be used when such points are known).

The theoretical and empirical literature has, of course, dealt with non-linear shapes. For exam-

ples of U-shaped relationships in economics and other disciplines see e.g.Weiman (1977), Goldin

(1995), Calabrese and Baldwin (2001), Groes, Kircher, and Manovskii (2014), Sutton and Tre-

fler (2016) (also see discussions in Lind and Mehlum (2010), Simonsohn (2018) and Kostyshak

(2017)). Inverse U-shaped relationships include the case of the so-called single-peaked preferences,

which is an important class of preferences in psychology and economics. In empirical research,

U-shaped functions e.g. often appear in environmental economics, particularly in studies relating

electricity consumption to temperature. Typically, the switch between heating and cooling is set

around 18.3°C (65°F). Traditionally, this non-linear relationship between temperature and elec-

tricity consumption is modeled using heating degree-days (HDD) and cooling degree-days (CDD)

in least squares regressions, as in Pardo, Meneu, and Valor (2002). More advanced techniques,

like panel threshold regression (Bessec and Fouquau (2008)) or semiparametric spline models

(Engle, Granger, Rice, and Weiss (1986)), have also been used. Another area where U-shaped

relationships are found is in the study of happiness across the lifespan. Research by Blanchflower

(2020) and others (e.g., Clark (2007)) shows that, after controlling for factors like gender, educa-
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tion, marital status, and employment, happiness follows a U-shape, with a minimum around age

48. This pattern has been observed in both developed and developing countries, and similar find-

ings have been confirmed for apes (Weiss et al. (2012)). However, these studies rely on quadratic

specifications in age to test the relationship even when graphical evidence (like in Blanchflower

(2020))) a more consistent with an asymmetric U-shape relationship. More advanced techniques,

like semiparametric splines (Wunder, Wiencierz, Schwarze, and Küchenhoff (2013)), show a U-

shape below age 60 but a downward trend beyond that. In happiness research, identifying the

turning point in age is key and, thus, techniques like our would be most suitable also for that

reason.

Some literature in accounting documented S-shaped relationships – when e.g. stock price response

to unexpected earnings is first convex and then becomes concave after a switch point (and is

monotonic throughout the domain). For specific examples see Freeman and Tse (1992) or Das and

Lev (1994), among others. S-shaped growth curves of the adopted population in a large society

is a generally accepted empirical feature of innovation diffusion (see discussions in Utterback

(1996), Rogers (2003)). Thus, testing for an S-shape in this case would allow one to conclude

whether technology evolves as one would expect. Newell, Genschel, and Zhang (2014) uses S-

shaped curves to model decays in the availability or usage of traditional media. We have not

been able to find a formal statistical test in the literature for this type of shape.

An important part of our analysis is estimating switch points between different shape patters

(this is formally defined later). There are a few papers using a kernel approximation to estimate a

minimum (or maximum) of an unknown function, starting with Parzen (1962) which describes a

procedure for finding a mode of a probability density function. Eddy (1980) improves his method

to achieve better convergence rate, he shows that the mean squared error of the mode estimator

can converge to zero at rate N−1−ε for any ε > 0. Muller (1989) describes a similar procedure

for finding a peak of a regression function. We are not aware of similar procedures using splines.

There is also a large literature on identifying break points in regression functions, i.e. points at

which the function is either discontinuous or has a discontinuity in one of its derivatives. For

example Feder (1975) develops asymptotic theory for linear estimators of segmented regressions,

where the parameters of interest are both the parameters in each segment and points at which

the behaviour of the function changes. Estimates of these kinds of break points are typically

faster than N−1/2 (see e.g. Muller (1992)), making them very attractive, but in this paper we

avoid making any assumptions about a level of discontinuity (if any) at the switch points so
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we don not rely on any result of that kind. Other important papers in this strand of literature

on structural breaks include Delgado and Hidalgo (2000), which suggests estimators of location

and size of structural breaks in a nonparametric regression model and is applicable in both

cross sectional and time series models. Hidalgo, Lee, and Seo (2019) gives robust inference in

threshold regression models when it is not known a priori whether at the threshold point the

true specification has a kink or a jump and the threshold itself is unknown. In a related work,

Hidalgo, Lee, Lee, and Seo (2023) proposes a continuity test for the threshold regression model

based on the findings about a risk lower bound in estimating the threshold parameter without

knowing whether the threshold regression model is continuous or not.

Our model also involves a semi-parametric specification combining B-spline approximation with

linear components, which has been analysed in a number of papers, e.g. Speckman (1988),

Heckman (1986). Rice (1986) analyses convergence rates for semiparametric model combining

splines and linear terms, under particular assumptions on variables. The main difference between

his approach and ours is that he uses an N -dimensional space of splines with all the observations

of the regressor treated as knots, whereas we use a space of splines smaller than the number of

observations and we can define the knots independently of the data. The basis splines in his case

are orthogonal, simplifying derivations, but because of the more dense spline system his model

is more prone to overfitting, which he avoids by adding a penalty term. In our case the number

of splines grows slower than the number of observations, allowing us to achieve consistency

without adding a smoothing penalty term. In his model he shows that the estimate of the linear

component is biased, with rate depending on the size of the penalty, and that to decrease bias

one needs to use lower penalty than optimal. Under our assumptions we can use the results from

Newey (1997) which show that the parametric component achieves root N consistency and is

asymptotically unbiased.

3 Setting and a brief outline of main ideas

Our leading case in Sections 3-5 can be described by the following setting:

y = m(x) + z′γ0 + u, (1)

E[u|x, z] = 0, (2)

7



where m ∈ C1 [x, x] where C1 denotes the class of smooth functions. The function m(·) and

parameter γ0 is unknown.2

To characterize the property of m(·) as that of a changing shape, we start with an illustration

of a function that changes shape once.

Let us, first, denote m|[a,b] as m(·) restricted to the interval [a, b] and, second, suppose that for

some s01 ∈ [x, x],

m|[x,s01] ∈ M1

(
[x, s01]

)
, m|[s01,x] ∈ M2

(
[s01, x]

)
, (3)

where M1 and M2 are two classes of functions that describe functional properties that can be

localized in the sense that

m|[a,b] ∈ Mj ([a, b]) ⇒ m|[c,d] ∈ Mj ([c, d]) ∀[c, d] ⊆ [a, b], j = 1, 2. (4)

We also assume that

M1 ([a, b]) ∩M2 ([a, b]) = ∅ ∀[a, b]. (5)

We interpret s01 as the turning or switch point as at that point the regression function changes

its pattern from class M1 to class M2. We are ultimately interested in a scenario where s01 is not

known and has to be estimated from the data.

Consider the following two examples.

Example 1 (U-shape, inverse U-shape, quasi-convexity, quasi-concavity). To the best of our

knowledge, there is no general agreement in the literature on how to define U-shaped relation-

ships mathematically. On of the most common definitions is that the function first decreases till

some switch point and then increases. However, some authors would also incorporate convexity

requirements into this property. To avoid any ambiguity, below we state explicitly what mean by

U-shape. Our testing procedures can, of course, additional convexity requirements.

A (strict) U-shaped function m(·) is first (strictly) decreasing on some interval [x, s01] and then

2. This setting can be easily extended to allow for ψ(z, γ0) instead of z′γ0 for a known nonlinear function
ψ(z, ·) and unknown γ0.
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on [s01, x] it is (strictly) increasing. Clearly then

M1 ([a, b]) =
{
m|[a,b] : m′(x) < 0 a.e. on [a, b]

}
,

M2 ([a, b]) =
{
m|[a,b] : m′(x) > 0 a.e. on [a, b]

}
.

It is easy to see that M1 and M2 satisfy conditions (4) and (5) above. In the case of an inverse

U-shape (also often called hump-shape), the roles of M1 and M2 are reversed.

A non-strict version of U-shape may involve intervals of constancy and can be formulated as

non-strict inequalities on the signs of the derivatives.

Related to U-shape is the class of quasi-convex functions which is defined as{
m(·) : ∀x1, x2 ∈ [a, b] ∀λ ∈ [0, 1] m(λx1 + (1− λ)x2) ≤ max

{
m(x1),m(x2)

}}
.

Function m is quasi-concave if and only if −m is quasi-convex. A smooth function is quasi-

convex (-concave) if and only if it first decreases (increases) up to some point and then increases

(decreases) incorporating a special case of monotonicity when a switch point is located at one of

the boundary points of the interval. For quasi-convex (-concave) functions this switch point may

not be known a priori, and thus, it would have to be estimated. This description can be changed

to a strict version.

When considering a U-shape property a researcher may want to make further restriction on the

function being convex. It is easy to do by adding an inequality m′′(x) > 0 to the definition of

classes M1 and M2.

Example 2 (S-shape). There is no generally agreed on definition of S-shape. E.g. one inter-

pretation defines a (strict) S-shaped as m(·) which is first (strictly) convex and increasing on

some interval [x, s01] and then on [s01, x] it is (strictly) concave and increasing. In our setting this

means

M1 ([a, b]) =
{
m|[a,b] : m′′(x) > 0 and m′(x) > 0 a.e. on [a, b]

}
,

M2 ([a, b]) =
{
m|[a,b] : m′′(x) < 0 and m′(x) > 0 a.e. on [a, b]

}
,

if m(·) is twice differentiable (if not, convexity and concavity can be formulated without involving

the derivatives). It is easy to see that M1 and M2 satisfy conditions (4) and (5) above. This

interpretation of S-shape is close to prospect theory in behavioral economics (see Kahneman and
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Tversky (1979).)

Other fields may understand S-shape differently. E.g., another way to interpret it would be as the

regression function first strictly decreasing then strictly increasing and then strictly decreasing

again. This interpretation would require two interiors switch points s01 < s02 and three classes

M1([x, s
0
1]), M2([s

0
1, s

0
2]) and M3([s

0
2, x]) with

M1 ([a, b]) = M3 ([a, b]) =
{
m|[a,b] : m′(x) < 0 a.e. on [a, b]

}
,

M2 ([a, b]) =
{
m|[a,b] : m′(x) > 0 a.e. on [a, b]

}
.

More generally, we have an ordered sequence of interior switch points s01, s
0
2 . . . , s

0
J such as

s00 ≡ x < s01 < s02 . . . < s0J < x ≡ s0J+1

(where the support boundaries are denoted as s00 and s0J+1 for notational convenience) and a

sequence of properties Mj, j = 1, . . . , J + 1, such that

m|[s0j ,s0j+1]
∈ Mj+1

(
[s0j , s

0
j+1]
)
, j = 0, . . . , J, (6)

It is important that the ordering of Mj, j = 1, . . . , J is predetermined – that is, we know the

order in which the properties of the regression function change.

Condition C1. (a) Classes Mj, j = 1, . . . , J + 1, describe functional properties that can be

localized in the sense that

m|[a,b] ∈ Mj ([a, b]) ⇒ m|[c,d] ∈ Mj ([c, d]) ∀[c, d] ⊆ [a, b], j = 1, 2. (7)

(b) We also assume that

Mj ([a, b]) ∩Mj+1 ([a, b]) = ∅ ∀[a, b], j = 1, . . . , J. (8)

Part (a) of Condition C1 refines the notion of what it means for a class to capture shape – this is

a property that extends to subintervals. Part (b) gives a general condition for a change in shape

that is formulated for any two consecutive classes.

We can establish the identification of s0j , j = 1, . . . , J . Henceforth, s1 < s2 < . . . < sJ will denote
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a generic ordered sequence of switch points located in the interior of [x, x].

Proposition 1 (Identification). In the model (6) with a given ordering s01 < s02 < . . . < s0J of

switch points, the switch points s0j , j = 1, . . . , J , are identified under Condition C1.

Below is an example of a situation with multiple switch points.

Example 3 (two local regression peaks). Consider the case when the smooth regression function

has two local regression peaks. Then, in addition to estimating the two locations of local regression

peaks we have to estimate another point between them where the regression function has a local

minimum and turns from the decreasing pattern to the increasing one.

m(x)

xx = s00 s01 s02 s03 x = s04

Figure 1: Two local regression peaks

Formally we have three interior switch points s01, s
0
2, s

0
3 such that s00 ≡ x < s01 < s02 < s03 < x ≡ s04,

with the corresponding sets

M1 ([a, b]) = M3 ([a, b]) :=
{
m|[a,b] : m′(x) > 0 a.e. on [a, b]

}
,

M2 ([a, b]) = M4 ([a, b]) :=
{
m|[a,b] : m′(x) < 0 a.e. on [a, b]

}
.

Points s01 and s03 are locations of the two local regression peaks whereas s02 describes the location

of the inevitable local minimum between s01 and s03.

It is easy to see that Mj, j = 1, . . . , 4, satisfy conditions (7) and (8).

Let M0 denote the class of all smooth regression functions m that satisfy (6):

M0 =
{
m : m satisfies (6) for some s01 < s02 < . . . < s0J

}
.
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Our null hypothesis is

H0 : m ∈ M0 vs. H1 : m /∈ M0 (9)

(with the smoothness of functions in M0 being the maintained hypothesis).

The first step of our testing procedure will be to estimate m by a smooth join of B-splines of

degree qj defined on each estimated shape interval [ŝj, ŝj+1], with ŝ0 = x, ŝJ+1 = x. Suppose that

the B-spline on [ŝj, ŝj+1] is build on Lj+1 base B-splines (further details are in the next section).

Our estimation will guarantee that as the sample size increases and all Lj+1, j = 0, . . . , J ,

increase with it our estimator will be a consistent estimator of m under H0.

Before advancing to the detailed technical description of that step, as well as the subsequent

steps in testing, let us indicate what will differentiate our method from some other methods

available in the literature.

From a big picture perspective, our methodology, just as in Komarova and Hidalgo (2023), is

related to methods used in goodness of fit tests. Following Stute (1997a) or Andrews (1997) and

Komarova and Hidalgo (2023), we base the testing procedure on functionals of the partial sums

empirical process

Kn (x) =
1

n

n∑
i=1

ûi1(xi < x), x ∈ [x, x] (10)

where 1 (·) is the indicator function. Here

ûi = yi − m̂B (xi; ŝ)− z′iγ̂, i = 1, . . . , n,

are the residuals obtained after m has been estimated by the nonparametric estimator m̂B (xi; ŝ)

by means of B-splines briefly described above and γ0 has been estimated by γ̂ found simultane-

ously with m̂B (xi; ŝ), see Section 4 for more detail (in a nutshell, mB(x; ŝ)+z
′γ̂ denotes the best

approximation of m(x) + z′γ0 using the sum of the join of B-splines based on estimated switch

points ŝ for m and an additive separable linear function in z.) .

Unfortunately, after normalization, the limit covariance structure of Kn (x) depends on M0,

making inferences based on Kn (x) very difficult to perform, if at all possible. For the simplicity
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of an illustration, consider the case of having no zi on the right-hand side. Then

Kn (x) =
1

n

n∑
i=1

ui1(xi < x) +
1

n

n∑
i=1

(mB(xi; ŝ)− m̂B(xi; ŝ))1(xi < x)

+
1

n

n∑
i=1

(m(xi)−mB(xi; ŝ))1(xi < x). (11)

In this decomposition the first term can be shown to be
√
n-convergent in distribution to the

standard Brownian motion. The second term is also Op

(
1√
n

)
, which means that the asymptotic

distribution of Kn (x) might not be Gaussian and is difficult to characterize, making inferences

very cumbersome. The third term in its turn can be represented as

1

n

n∑
i=1

(m(xi)−mB(xi; ŝ))1(xi < x) =
1

n

n∑
i=1

(
m(xi)−mB(xi; s

0)
)
1(xi < x)

+
1

n

n∑
i=1

(
mB(xi; s

0)−mB(xi; ŝ)
)
1(xi < x), (12)

where the asymptotic behavior of first sub-term can be made asymptotically negligible with the

choice of rates of Lj, j = 1, . . . , J , relative to n and the asymptotic behavior of the second

sub-term depends on the rate of convergence of ŝ to s0.

In contrast to our method, the approach in Komarova and Hidalgo (2023) would assume the

turning points in s0 to be known (effectively making ŝ = s0 in the decomposition above) and,

thus, the right-hand side of (12) would only have the first sub-term significantly simplifying the

ability to control the asymptotic behavior of that whole term. Our setting is more realistic as the

turning points s0 are taken to be unknown. This is a fundamental difference between this paper

and Komarova and Hidalgo (2023) which results in very non-trivial theoretical and empirical

challenges.

With estimates ŝ and mB(xi; ŝ) in hand we apply the transformation of Kn (x) analogous to the

one used in Komarova and Hidalgo (2023) and based on ideas of Khmaladze (1982) as well as

related to the CUSUM of recursive residuals proposed by Brown, Durbin, and Evans (1975).

This leads to the asymptotic behavior of the transformation to be
√
n-convergent to a standard

Brownian motion. Then testing is implemented using standard functionals such as Kolmogorov-

Smirnov, Cramér -von-Mises or Anderson-Darling. In the next section we give the details of the

estimation and testing procedure.

13



4 Modified null hypothesis and estimation methodology

We start with the discussion of estimating m under the null in line with our outline in Section

3.

For a given collection of switch points in the vector s, we can consider individual intervals

[sj−1, sj]. On each of these intervals we consider a B-spline of degree qj with knots that split

[sj−1, sj] into L
′
j equally spaced intervals:3

mB;j(x; s) ≡
Lj∑
ℓ=1

βℓ,jpℓ,Lj ,[sj−1,sj ],qj (x) , where Lj = L′
j + qj, (13)

and
{
pℓ,Lj ,[sj−1,sj ],qj (·)

}Lj

ℓ=1
is the collection of the base B-splines base for the chosen system of

knots and the chosen degree qj (will be described shortly).

Then we can define

mB(x; s) =
J∑

j=1

mB;j(x; s) · 1[sj−1, sj) +mB;J+1(x) · 1[sJ , sJ+1], x ∈ [x, x]. (14)

Now we want to delve in more detail in the properties of B-splines in (13). These B-splines

are constructed from polynomial pieces joined at some specific points called knots. In (14) we

use B-splines whose domain and the system of knots differ on different sides of switch points.

Generally, let q be the degree of a spline, L′ be the number of subintervals of [s, s] on which

we define the spline (i.e. the number of polynomial pieces), then L = L′ + q is the number of

B-splines in the basis.

We define the system of knots which split [s, s] into L′ equally spaced intervals. When defining

B-spline of degree q we repeat the knots at the end points of the domain q + 1 times. To be

precise, we let

t = (tℓ)
L+2q+1
ℓ=1 =

s, . . . , s︸ ︷︷ ︸
q+1 times

, s+
s− s

L′ , s+ 2
s− s

L′ , . . . , s, . . . , s︸ ︷︷ ︸
q+1 times

 .

be the knot sequence. Then the ℓth B-spline of degree q defined on the knots t is a function of

3. The condition that these intervals are equally spaced is not important and is only imposed for the simplicity
of the exposition. We only need that the system of knots has to become increasingly dense in [sj−1, sj ].
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x we denote by pℓ,L,[s,s],q(x). B-splines are defined recursively (see De Boor 1978) as follows:

pℓ−q,L−q,[s,s],0(x) = 1 (x ∈ [tℓ, tℓ+1)) =

1 if tℓ ≤ x < tℓ+1

0 otherwise

and for 0 < k ≤ q − 1:

pℓ,L−k,[s,s],q−k =
x− tℓ
tℓ+q − tℓ

pℓ−1,L−k−1,[s,s],q−k−1(x) +
tℓ+q+1 − x

tℓ+q+1 − tℓ+1

pℓ,L−k−1,[s,s],q−k−1(x).

By convention, anything divided by zero is zero.

An example of the steps in the construction of base B-splines for q = 3, L = 8, [s, s] = [0, 1] is

given in Figure 2.

Below is the list of some properties of base B-splines.

• pℓ,L,[s,s],q(x) is non-negative and is positive over a domain spanned by q+2 adjacent knots,

and is zero everywhere else;

• between each pair of consecutive knots pℓ,L,[s,s],q(x) is a polynomial of degree q;

• at a knot which is repeated m times pℓ,L,[s,s],q(x) has q −m continuous derivatives;

• at any given x, at most q + 1 B-splines are non-zero;

• at any given x, the values of all B-splines sum to 1: ∀x ∈ [s, s]
∑L

ℓ=1 pℓ,L,[s,s],q(x) = 1.

The derivative of a B-spline is composed of polynomial sections of degree q− 1 defined over the

same set of knots (with boundary knots having one less multiplicity), and is itself a B-spline

of degree one lower. In particular, one can show, e.g. by induction (see e.g. De Boor (1978) or

Procházková (2005)), that for a base B-spline,

∂pℓ,L,[sj−1,sj ],q

∂x
=

q

tℓ+q − tℓ
pℓ−1,L−1,[sj−1,sj ],q−1(x)−

q

tℓ+q+1 − tℓ+1

pℓ,L−1,[sj−1,sj ],q−1(x), (15)

which means that the derivative of the spline mB;j(x; s) ≡
∑L

ℓ=1 βℓpℓ,L,[sj−1,sj ],q(x) is

∂mB;j(x; s)

∂x
= q

L∑
ℓ=2

∆βℓ
tℓ+q − tℓ

pℓ−1,L−1,[sj−1,sj ],q−1(x). (16)
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Figure 2: An example of base B-spline functions construction for q = 3.
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Note that in the final expression the knots t are still based on the original q, not q − 1.

Approximation and estimation of the regression mean m(·) by B-splines are appealing due to a

convenient way to capture shape properties of interest, particularly those based on the derivatives

of the regression function (such as U-shape, S-shape, etc.). In other words, the use of B-splines

helps us to write the class M0 in (9) in terms of restrictions on the coefficients of the base

B-splines in an approximation to m (·) (this requirement captured formally in Condition C2

below). With Lj → ∞ as n → ∞, j = 1, . . . , J + 1, the number of coefficients of the B-splines

and the number of constraints will increase to infinity.

It is well understood that the choice of the number of knots determines the trade-off between

overfitting and underfitting when there are respectively too many or too few knots. The main

difference between B-splines and P-splines is that the latter tend to employ a large number

of knots but to avoid oversmoothing they incorporate a penalty function based on the τ -th

difference △τβℓ, where △βℓ = βℓ − βℓ−1, with τ = 2 being the most common choice. It is worth

mentioning that other sieve estimators might be used, see the survey in Chen (2007), but we

found B-splines particularly useful for our purposes.

Since out ultimate goal is to develop a nonparametric statistical test for (9) using the consistent

estimators ŝ1, ŝ2 . . . , ŝJ , we want to be sure that functional properties in each class Mj, j =

1, . . . , J + 1, can be captured by the properties of coefficients of B-splines approximating m on

the respective interval [sj−1, sj] in the partition of [x, x], and that this representation by the

properties of coefficients of approximating B-splines becomes both necessary and sufficient as

the number of knots on [sj−1, sj] goes to infinity.

Formally, this is stated in Condition C2 below. Before we formally introduce this condition, let

us introduce some helpful notations. Let Bj(qj, Lj) denote the set of all B-splines of degree qj

with knots that split [sj−1, sj] into L
′
j equally spaced intervals4. A generic element in this set is

written as a linear combination in (13). Thus, any element in Bj(qj, Lj) can be fully characterised

by the vector βall,j ≡ (β1,j, . . . , βLj ,j)
′ ∈ RLj and constraints on this vector can be mapped into

constraints on the B-spline. We consider each vector βall,j ∈ RLj to be embedded into the long

vector βall = (β′
all,1, . . . , β

′
all,J+1)

′ ∈ R
∑J+1

j=1 Lj .

Let T{(qj ,Lj)}J+1
j=1 ,s

⊂ R
∑J+1

j=1 Lj denote a set that describes constraints on the vector of coefficients

4. The condition that these intervals are equally spaced is not important and is only imposed for the simplicity
of the exposition. We only need that the system of knots has to become increasingly dense in [sj−1, sj ].
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βall for a given vector s pf ordered switch points. We can subsequently define

M{(qj ,Lj)}J+1
j=1 ,s

=

{
mB(x; s) in the form of (14) | βall ∈ T{(qj ,Lj)}J+1

j=1 ,s

}
.

M{(qj ,Lj)}J+1
j=1 ,s

is, thus, a collection of functions that are joins of B-splines defined individually

on the intervals [sj−1, sj]. T{(qj ,Lj)}J+1
j=1 ,s

can contain restrictions that will guarantee that the

whole mB(·; s) defined in such a piece-wise way is continuous, or, additionally, smooth or, more

generally, r-th continuously differentiable (the choice of r would depend on the degrees qj, j =

1, . . . , J + 1 of the B-splines). E.g., the continuity of the whole piece-wise approximation is

ensured by the constraints

βLj ;j = β1;j+1, j = 1, . . . , J. (17)

In order to guarantee the smoothness of the approximation mB(·; s), in addition to (17) we have

to impose that5

qjL
′
j

(
βLj ;j − βLj−1;j

)
sj − sj−1

=
qj+1L

′
j+1 (β2;j+1 − β1;j+1)

sj+1 − sj
, j = 1, . . . , J, (18)

which simplifies to

βLj ;j − βLj−1;j = β2;j+1 − β1;j+1 = 0, j = 1, . . . , J (19)

in the case when the switch point is a local minimum or a local maximum. Further restrictions

can be derived to enforce the continuity of the second derivative, etc. shall a researcher want to

impose higher order restrictions.

In the regularity conditions in Section 5.1 we require the regression function to be smooth and

its first derivative to be Holder-continuous, therefore it is natural to narrow down M0 to include

only those regression functions that satisfy those regulation conditions. We will denote this class

as M∗
0.

Condition C2 below formalizes our idea of approximating the properties in M∗
0 by constraints

on coefficients in the approximation mB(·; s) in a necessary and sufficient fashion.

Condition C2. For each s there is a set T{(qj ,Lj)}J+1
j=1 ,s

⊂ R
∑J+1

j=1 Lj that satisfies the following

properties:

5. this is in case the interior knots are equidistant within each [sj−1, sj ].
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(i) For a given s, T{(qj ,Lj)}J+1
j=1 ,s

does not depend on data {xi}i∈Z and, thus, is non-stochastic;

(ii) For any s, the boundary of T{(qj ,Lj)}J+1
j=1 ,s

consists of a finite number of smooth surfaces;

(iii) Let MT
{(qj ,Lj)}

J+1
j=1

denote the union of MT
{(qj ,Lj)}

J+1
j=1

,s
over all possible s and let H be the

Hausdorff distance in the supremum norm in the space of continuous functions. Then

H

(
M∗

0,MT
{(qj ,Lj)}

J+1
j=1

)
= O

 1(
min

j=1,...,J+1
Lj

)r

 (20)

for r > 2 and min
j=1,...,J+1

Lj → ∞.

(iv) Let M∗
0,s0 denote the set of functions in class M∗

0 with switch points s0. For any pair (s0, s)

H

(
M∗

0,s0 ,MT
{(qj ,Lj)}

J+1
j=1

,s

)
= Ω

(
∥s0 − s∥∞

)
. (21)

Condition C2(i) ensures that the constraints in the estimation can be constructed in a generic

fashion and we can talk about a deterministic approximation of class M∗
0 by MT

{(qj ,Lj)}
J+1
j=1

,s. Con-

dition C2(ii) guarantees that for a given s the implementation of conditions T{(qj ,Lj)}J+1
j=1 ,s

comes

down to enforcing a finite number of constraints on coefficients in βall. In practice, definitions of

T{(qj ,Lj)}J+1
j=1

will often be sufficient to guarantee functional properties of M∗
0. Condition C2(iii)

ensures that these conditions become asymptotically necessary. Condition C2(iv) puts a lower

bound on the quality of fit when we use a set of constraints which misspecify the switch point:

we need the loss in fit to be large enough to allow us to estimate ŝ. Combined Condition C2(iii)

and Condition C2(iv) ensure that, as long as s −→ s0, the constraints in T{(qj ,Lj)}J+1
j=1 ,s

capture

constraints in M∗
0,s0 in a necessary and sufficient way as the number of knots grows to infinity,

and if the convergence of s to s0 is sufficiently fast, the approximation rate in the constrained

approximation with the enforced T{(qj ,Lj)}J+1
j=1 ,s

is the same as the rate in the unconstrained B-

spline approximation. We can interpret r as the number of continuous derivatives elements of

M∗
0.

Given Condition C2, our idea is to test the null hypothesis

HB
0 : βall ∈ T{(qj ,Lj)}J+1

j=1 ,s
for some s vs. HB

1 : (negation of null) (22)

formulated in terms of the approximation for m.
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Let us now illustrate Condition C2 and the approximation for the U-shape in Example 1.

Example 1 (continued). In the case of the U-shape property the approximation consists of two

B-spline joined at s0:

mB(x; s
0) =

L∑
ℓ1=1

βℓ1;1pℓ1,L,[x,s0],q(x)︸ ︷︷ ︸
mB;1(x;s0)

·1[x, s0) +
L∑

ℓ2=1

βℓ2;2pℓ2,L,[s0,x],q(x)︸ ︷︷ ︸
mB;2(x;s0)

·1[s0, x],

where for simplicity we took q1 = q2 = q (same degree of B-splines on both sides of s0) and

L1 = L2 = L (same number of knots on both sides of s0). To capture monotonicity patterns and

also smoothness at s0 described by (17)-(19), we take

T{(q,L)} =

{
(βall,1, βall,2) | βℓ1;1 ≥ βℓ1+1;1, ℓ1 = 1, . . . , L− 1, βℓ2;2 ≤ βℓ2+1;2, ℓ2 = 1, . . . , L− 1,

βL;1 = βL−1;1 = β1;2 = β2;2, βLj−2;j = β3;j+1.}
}

Inequalities βℓ1;1 ≥ βℓ1+1;1, ℓ1 = 1, . . . , L − 1, capture the fact that the function is decreasing

on [x, s0], while βℓ2;2 ≤ βℓ2+1;2, ℓ2 = 1, . . . , L − 1, capture the fact that it is increasing on

[x, s0]. Equality βL;1 = βL−1;1 for the continuity of the approximation at s0, and the equalities

∆βL;1 = ∆β2;2 = 0 for smoothness of the approximation at s0 as well as for the minimum of the

approximation at s0 together give us βL;1 = βL−1;1 = β1;2 = β2;2.

Now let’s us show that C2 (iii) holds. From the B-spline theory we know (e.g. from De Boor

(1978)) that the approximation of three-times differentiable m|[x,s0] and m|[s0,x] by unconstrained

B-splines on the respective intervals [x, s0] and [s0, x] can be attained at the rate O
(

1
L3

)
. Let us

denote such approximations as m̃B;1(·) and m̃B;2(·), respectively:

m̃B;1(·; s0) =
L∑

ℓ1=1

β̃ℓ1;1pℓ1,L,[x,s0],q(x), m̃B;2(·; s0) =
L∑

ℓ2=1

β̃ℓ2;2pℓ2,L,[s0,x],q(x).

Let us show that because of m|[x,s0] strictly decreasing we can without a loss of generality take

β̃ℓ1;1 ≥ β̃ℓ1+1;1 for all ℓ1 = 1, . . . , L − 1, in m̃B;1(·), and analogously without a loss of generality

take β̃ℓ2;2 ≤ β̃ℓ2+1;2 for all ℓ2 = 1, . . . , L − 1, in m̃B;2(·) Indeed, from the approximation theory
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we know that

sup
x∈[x,s0]

∣∣∣∣∣
L∑

ℓ1=1

β̃ℓ1;1p
′
ℓ1,L,[x,s0],q

(x)−m′|[x,s0](x)

∣∣∣∣∣ = O

(
1

L2

)
, (23)

sup
x∈[s0,x]

∣∣∣∣∣
L∑

ℓ2=1

β̃ℓ2;2p
′
ℓ2,L,[s0,x],q

(x)−m′|[s0,x](x)

∣∣∣∣∣ = O

(
1

L2

)
. (24)

Using the formula for the derivative of B-spline, obtain

L∑
ℓj=1

β̃ℓj ;jp
′
ℓj ,L,[sj−1,sj ],q

(x) = q
L−1∑
ℓj=1

△β̃ℓj+1′j

tlj+1+q;j − tlj+1;j
pℓj+1,L,[sj−1,sj ],q−1 (x) , j = 1, 2, (25)

where tlj ;j denotes a knot on [x, s0] for j = 1 and on [s0, x] for j = 2.

Taking into account (23)-(25), the fact that
K1

L
tlj+1+q;j−tlj+1;j ≤ K̄1

L
for some constant K1, K̄1 >

0 as well as the facts that m′|[x,s0](x) ≥ 0 and m′|[s0,x](x) ≤ 0 and

L∑
ℓj=1

pℓj ,L,[sj−1,sj ],q (x) = 1 for all x in the respective interval, (26)

we conclude that

△β̃ℓ1+1;1 ≤
K2

L3
, △β̃ℓ2+1;2 ≥ −K2

L3
,

for some constant K2 > 0. Thus, to ensure that β̃ℓ1+1;1 ≤ 0, ℓ1 = 1, . . . , L − 1, and β̃ℓ2+1;2 ≥ 0,

ℓ2 = 1, . . . , L− 1, which will guarantee the desired monotonicity patterns in the approximation,

we have to change each coefficient β̃ℓ1+1;1 by at most K2

L3 . Because of the partitioning property

(26), the B-splines with such potentially new coefficients that satisfy the desired inequalities will

approximate functions m|[x,s0](·) and m|[s0,x](·) at the same rate O
(

1
L3

)
as before.

Now let’s show that imposing restrictions β̃L−1;1 = β̃2;2 = β̃L;1 = β̃1;2 , β̃Lj−2;j = β̃3;j+1 that

ensure suitable smoothness of the approximation as well as the zero derivative at s0, does not

change the approximation rate.

Indeed, using the approximation properties of the B-splines as well as their derivatives, we have
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the following sets of properties:∣∣∣∣∣∣
L∑

ℓj=1

β̃ℓj ;jpℓj ,L,[sj−1,sj ],q(s
0)−m(s0)

∣∣∣∣∣∣ = O

(
1

L3

)
, j = 1, 2,

∣∣∣∣∣∣
L∑

ℓj=1

β̃ℓj ;jp
′
ℓj ,L,[sj−1,sj ],q

(s0)

∣∣∣∣∣∣ = O

(
1

L2

)
, j = 1, 2,

∣∣∣∣∣∣
L∑

ℓj=1

β̃ℓj ,[sj−1,sj ],qp
′′
ℓj ,L;j

(s0)−m′′(s0)

∣∣∣∣∣∣ = O

(
1

L

)
, j = 1, 2,

where the second property also takes into account that m′(s0) = 0.

Note that

L∑
ℓ1=1

β̃ℓ1;1pℓ1,L,[x,s0],q(s
0) = β̃L;1,

L∑
ℓ2=1

β̃ℓ2;2pℓ2,L,[s0,x],q(s
0) = β̃L;2,

L∑
ℓ1=1

β̃ℓ1;1p
′
ℓ1,L,[x,s0],q

(s0) =
L△β̃L;1
K3

,
L∑

ℓ2=1

β̃ℓ2;2p
′
ℓ2,L,[s0,x],q

(s0) =
L△β̃2;2
K4

,

L∑
ℓ1=1

β̃ℓ1;1p
′′
ℓ1,L,[x,s0],q

(s0) =
L2(2△β̃L;1 −△β̃L−1;1)

K5

,
L∑

ℓ2=1

β̃ℓ2;2p
′′
ℓ2,L,[s0,x],q

(s0) =
L2(△β̃3;2 − 2△β̃2;2)

K6

,

for some constants K3 > 0, K4 > 0, K5 > 0, K6 > 0.

These imply that we may have to change the values of coefficients of β̃ℓ1;1, ℓ1 = L−2, L−1, L, and

β̃ℓ2;2, ℓ2 = 1, 2, 3, by at most K7

L3 for some K7 > 0 to ensure the desired equality constraints as well

as to preserve the monotonicity patterns of the approximation. This means (taking into account

Eq. (26) once again) that with coefficients possibly changed once again, the approximation rate

of B-splines is still O
(

1
L3

)
. □
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5 Testing methodology

5.1 Properties of the estimators

To formally prove that our testing procedure works, we need to establish the properties of our

estimators. We start by listing regularity conditions.

Condition C3. (i) {(xi, z′i, ui)′}ni=1 are i.i.d. random vectors. The support of x is normalized

to [0, 1] and its density function fX(x) is bounded away from zero on the whole support.

E(ui|xi, zi) = 0, E(u2i |xi, zi) = σ2
u <∞, ui has finite 4th moments, there exists ν > 0 such

that E(|zi|2+ν) <∞, and E((zi − E(zi|xi))(zi − E(zi|xi))′) ̸= 0.

(ii) m(x) is r ≥ 3 times continuously differentiable.

(iii)
(minj=1,...,J+1 Lj)

4

n
−→ 0,

(minj=1,...,J+1 Lj)
2r

n
−→ ∞ as n −→ ∞.

Condition C3(i) ensures that no linear combination of zi can be perfectly predicted by B-splines

in xi (we can think of it as no perfect multicollinearity condition: we cannot perfectly substitute

between fitting mB(xi) and γ′zi; adjusting γ cannot fully correct the overall fit if we chose an

incorrect switch point). This assumption is needed for identification and root n consistency of the

coefficients on zi. One implication of this assumption is that zi cannot include a constant. The

homoskedasticity assumption could be weakened in a similar way as in Komarova and Hidalgo

(2023). Condition C3(ii) on the smoothness of the estimated function determines the quality

of B-spline approximation. Condition C3(iii) provides the rates at which the number of knots

increases to infinity relative to n. This ensures that the bias term (due to the approximation

using B-splines) is asymptotically negligible.

5.1.1 Consistency

We first show that under the null (9) the constrained estimator defined in (35)-(37) is consistent.

To establish this, we consider the regression function m(·) to be a part of a certain compact set

and we supplement (37) by additional constraints on coefficients βℓ−j,js (even though in practice

such additional constraints most of the time will not be necessary). We rely on the consistency

theorem in Newey and Powell (2003).
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Since m(·) is smooth, it is bounded and has a finite Lipschitz constant. We take a very large

pointwise bound A1 > 0 and a very large Lipschitz constant A2 on all the candidate regression

functions under consideration (of course, these bounds should be large enough to be true for the

underlying regression mean E[y|x]). In other words, we take the intersection

Θ0 = M0 ∩
{
m(·) : sup

x∈[x,x]
|m(x)| ≤ A1, sup

[x,x]

|m′(x)| ≤ A2

}
. (27)

Proposition 2. Suppose that m ∈ Θ0 and Lj → ∞, j = 1, . . . , J + 1, as n → ∞. Then the

estimator m̂B(·; ŝ) obtained by solving (35)-(37) is consistent in the sense that

sup
x∈[x,x]

|m̂B(x; ŝ)−m(x)| p→ 0 as n→ ∞.

The consistency of m̂B(·; ŝ) guarantees the consistency of the switch points, as established in the

proposition below.

Corollary 1. Under conditions of Proposition 2, the estimators ŝj of switch points are consistent

for sj, j = 1, . . . , J .

We can also derive the rates at which the estiamtors converge to their limits:

Proposition 3. Under conditions C1-C3:

β̂ − β0 = Op

(√
L

n

)
, γ̂ − γ0 = Op

(√
1

n

)
, ŝ− s0 = Op

(
L√
n

)
.

5.2 The test statistic

5.2.1 Testing procedure and the justification of the need for a transformation

We use a Lagrange multiplier type test6. From Assumption 2 we know that the true error terms

are uncorrelated with any function of the regressors, i.e. E(uif(xi)) = 0 for any function f(·).
The idea of the test is to check if a similar property is satisfied by the regression residuals:

ûi = yi − m̂B(xi; ŝ)− γ̂zi. (28)

6. For more motivation behind this testing design see the discussion in Komarova and Hidalgo (2023).
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A common choice of the function f(·) used in this type of tests, see e.g. Stute (1997b), is

f(xi) = 1(xi < x) for some x ∈ [0, 1], which results in a test statistic of the form:

K(x) =
1

n

n∑
i=1

1(xi < x)ûi. (29)

Under the null hypothesis, K(x) should be close to zero. However, finding the limiting distribu-

tion of this statistic turns out to be problematic. Consider the following expansion:

K(x) =
1

n

n∑
i=1

1(xi < x)ui︸ ︷︷ ︸
T0

+
1

n

n∑
i=1

1(xi < x) (m(xi)−mB(xi; ŝ))︸ ︷︷ ︸
T1

+
1

n

n∑
i=1

1(xi < x) (mB(xi; ŝ)− m̂B(xi; ŝ))︸ ︷︷ ︸
T2

+(γ − γ̂)′
1

n

n∑
i=1

1(xi < x)zi︸ ︷︷ ︸
T3

.

It can be shown that

•
√
nT0

d−→ σB(FX(x)), where B(·) denotes the standard Brownian motion and FX(x) is the

cdf of x. This term has a well-defined limit which does not depend on the estimates. If this

term dominated, we would be able to easily perform tests using standard critical values.

• T2 = Op

(
1√
n

)
(follows from Lemma 5). This is the same rate of convergence as T0, but

unlike T0 this term does not have a standard known distribution. Instead, the distribution

depends on the estimated function in a non-trivial way. The presence of this term motivated

the need for a transformation in Komarova and Hidalgo (2023).

• T1 = Op(
1√
n
) (follows from Lemma 6), which implies that this term is not negligible com-

pared to T0. This is a major difference between our case and that in Komarova and Hidalgo

(2023), for whom the term of this form based on the known true s0 was of a smaller order

of magnitude than T0. We need to modify the transformation to make sure it removes this

term as well. An additional complication is that this term is non-linear in parameters, and

the Khmaladze transformation relies on linear projections. Because of that, we do not re-

move this term entirely, but only up to a linear approximation. This is sufficient to ensure

that the part which remains after the transformation is of a smaller order and does not

affect the limiting distribution.

• T3 = Op

(
1√
n

)
by the standard results on root n convergence of the linear part of a

25



partially linear model, see e.g. Robinson (1988). Hence T3 has the same convergence rate

as the other terms, and just like T2 it has a distribution which depends on the function we

are estimating. We add another modification to the transformation from Komarova and

Hidalgo (2023) to remove this term as well.

The last three terms are problematic because their asymptotic distributions depend on the esti-

mated function. As a result, the limiting distribution of the test statistic is not standard. In order

to achieve a limiting distribution which would allow us to perform testing using standard tech-

niques, we would like to transform the test statistic in a way which removes the last three terms

while leaving the asymptotic behavior of the first term unchanged. We describe a transformation

which achieves this goal in the next section.

5.2.2 The Khmaladze’s Transformation

The transformation which removes the problematic terms fromK(x) while keeping enough struc-

ture of the original statistic to allow for testing is a special case of a martingale transformation

introduced by Khmaladze (1982). It can remove all terms linear in P̃ , hence we define P̃ to in-

clude: B-splines basis functions (these are terms linear in βs, or in other words derivatives with

respect to βs: ∂m̂B(xi;ŝ)
∂βl

, these will remove T2), zs (derivatives of the linear part with respect to γk,

these will remove T3) and linear approximation with respect to s: ∂m̂B(xi;ŝ)
∂s

(this will remove the

leading linear component in T1). All of these are functions of the regressors (x, z), and we assume

E(ui|xi, zi) = 0, so the residual from regressing ui on functions of zi should be very close to ui,

hence the limiting behavior of the first term should be the same as without a transformation.

In Lemma 2 we show that:

∂m̂B(xi; ŝ)

∂sk
= 1 [ŝk−1, ŝk)

ŝk−1 − xi
ŝk − ŝk−1

∂m̂B(xi; ŝ)

∂x
+ 1 [ŝk, ŝk+1)

xi − ŝk+1

ŝk+1 − ŝk

∂m̂B(xi; ŝ)

∂x

where the derivative of B-spline is:

∂m̂B(xi; ŝ)

∂x
=

L∑
ℓj=1

β̂ℓjp
′
ℓj ,L,[ŝj−1,ŝj ],q

(x)

We let PLj ;j(x) denote the Lj-dimensional vector of base B-splines on [ŝj−1, ŝj], j = 1, . . . , J +

1, computed at x. The estimation uses the long system P ≡ (PL1;1(x)
′, . . . ,PLJ+1;J+1(x)

′)′.
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However, the constrained estimation under HB
0 results in some binding constraints. Once the

binding constraints are enforced, we end up with a smaller system of relevant base B-splines7.

We can refer to it as the system of “effective polynomials”and denote it as P̃(x). Let

P̃ k ≡
(
P̃(xk)

′, z′k,
∂m̂B(xk; ŝ)

∂s

)′

.

Note that the elements of P̃ are defined based on the estimates β̂, ŝ estimated using the entire

sample, under the constraints of HB
0 .

In our setting a transformation T of a function W (x) can be defined as:

(TW )(x) = W (x)−
∫ x

0

P̃′(y)

(∫ 1

x

P̃(v)P̃′(v)fX(v)dv

)+(∫ 1

y

P̃(w)W (dw)

)
fX(y)dy (30)

where A+ denotes the Moore-Penrose generalized inverse of A. In practice, we cannot evaluate

this transformation and instead we use its sample equivalent, Tn. For technical reasons, we add

a trimming which removes observations that fall just below knots. Let 1
2
< ζ < 1 and

G ≡

{
i : xi ∈ [0, 1] \

L⋃
ℓ

(
tℓ − n−ζ , tℓ

]}
. (31)

where {tℓ}Lℓ=1 is the set of knots we use to define our constrained B-spline basis functions. We

are now ready to define the transformation:

(TnW )(x) = W (x)− 1

n

∑
i∈G

P̃
′
i

(
1

n

n∑
k=1

P̃ kP̃
′
k1(xk ≥ xi)

)+ ∫ 1

xi

P̃(w)W (dw)1(xi < x). (32)

5.2.3 How the transformation removes the problematic terms

Suppose we apply the transformation to a step function W (x) of the following form:

W (x) =
1

n

n∑
i=1

g(xi, zi)1(xi < x)

7. e.g. we can enforce an equality constraint of the form βk = βk+1 by replacing the two B-spline basis functions
pk and pk+1 with a single term of the form pk + pk+1.
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where g(xi, zi) is some known function. By the properties of a Riemann-Stieltjes integrals with

a step function as the integrator:

∫ 1

xi

P̃(w)W (dw) =
n∑

k=1

P̃ k

(
1

n
g(xk, zk)

)
1(xk ≥ xi) =

1

n

n∑
k=1

P̃ kg(xk, zk)1(xk ≥ xi).

Then:

(TnW )(x) =

= W (x)− 1

n

∑
i∈G

P̃
′
i

(
1

n

n∑
k=1

P̃ kP̃
′
k1(xk ≥ xi)

)+(
1

n

n∑
k=1

P̃ kg(xk, zk)1(xk ≥ xi)

)
1(xi < x)

=
1

n

∑
i∈G

(
g(xi, zi)− P̃

′
i

(
1

n

n∑
k=1

P̃ kP̃
′
k1(xk ≥ xi)

)+
1

n

n∑
k=1

P̃ kg(xk, zk)1(xk ≥ xi)

)
1(xi < x)

+
1

n

∑
i/∈G

g(xi, zi)1(xi < x)

=
1

n

∑
i∈G:xi<x

(
g(xi, zi)− P̃

′
i

(
1

n

∑
k:xk≥xi

P̃ kP̃
′
k

)+
1

n

∑
k:xk≥xi

P̃ kg(xk, zk)

)
+

1

n

∑
i/∈G:xi<x

g(xi, zi)

The term in the first summation is a residual from regressing g(xi, zi) on P̃ i, where the estimator

is evaluated using only observations above xi (i.e. xk such that xk ≥ xi). The transformed TnW

at a point x has a similar form to the original W , i.e. it is a weighted sum of functions of the

observations xi below x, but for the majority of indices which fall in G we use the part of g(xi, zi)

which cannot be explained by B-splines and zs for observations above xi instead of the whole

g(xi, zi).

Consider the case where g(xi, zi) = P̃
′
ia for some constant vector a, i.e. where g(xi, zi) is a linear

combination the constrained B-spline functions evaluated at xi, of zi and of derivatives of the

constrained B-spline with respect to the switch point. In this case

W (x) =
1

n

n∑
i=1

P̃
′
ia1(xi < x).
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Then the transformed version of W is:

(TnW )(x) =
1

n

∑
i∈G:xi<x

(
P̃

′
ia− P̃

′
i

(
1

n

∑
k:xk≥xi

P̃ kP̃
′
k

)+
1

n

∑
k:xk≥xi

P̃ kP̃
′
ka

)
+

1

n

∑
i/∈G:xi<x

P̃
′
ia

=
1

n

∑
i∈G:xi<x

(
P̃

′
i − P̃

′
i

(
1

n

∑
k:xk≥xi

P̃ kP̃
′
k

)+
1

n

∑
k:xk≥xi

P̃ kP̃
′
k

)
a+

1

n

∑
i/∈G:xi<x

P̃
′
ia︸︷︷︸

≤C︸ ︷︷ ︸
=Op(n1−ζ)

= 0 +Op

(
n−ζ
)
= op

(
n− 1

2

)
.

The term inside the bracket in the second line is the residual from regressing P̃ i on itself, and

that residual is identically equal to zero for every i8.

This shows that the transformation removes all terms that are linear combinations of constrained

B-splines, zs and terms linearized in the switch point for i ∈ G, and as the sample size increases,

the number of i /∈ G becomes insignificant. This proves the following results:

Proposition 4. Let T2,3(x) =
1
n

∑n
i=1 1(xi < x)

(
mB(xi; ŝ)− m̂B(xi; ŝ) + (γ − γ̂)′ zi

)
. Then

(TnT2,3)(x) = op

(
n− 1

2

)
.

Proposition 5. Let T4(x) =
1
n

∑n
i=1 1(xi < x)

(
∂m̂B(xi;ŝ)

∂s
(ŝ− s0)

)
. Then

(TnT4)(x) = op

(
n− 1

2

)
and

(TnT1)(x) = op

(
n− 1

2

)
.

5.2.4 The distribution of the test statistic

We have shown that the transformation removes the last two terms. The next two results show

that the first term’s distribution remains unchanged and the second term remains negligible.

8. For any generalized inverse we can define PX = X(X ′X)− +X ′, which is a matrix projecting onto the span
of X. It has the property that PXX = X, i.e. the projection of X onto X is X. For a given i we let X be the
matrix containing columns P̃ i, P̃ i+1, . . . , P̃ n and think of the residual vector from a projection (regression) of X
onto itself. The residuals from this regression are zero: X − PXX = 0. The term in the bracket is just the first
entry in the residual vector.
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Proposition 6. Under C1-C3, the transformation does not affect the limit of
√
nT0(x):

√
n(TnT0)(x)

weakly
====⇒ σB(FX(x))

for any x ∈ [0, 1].

Combining all of these results, we arrive at the pivotal asymptotic distribution of the transformed

test statistic.

Theorem 1. Under H0 and conditions C1-C3:

√
n (TK(x))

weakly
====⇒ σuB(FX(x)),

σ̆2
u

p−→ σ2
u.

In order to implement rests based on this asymptotic distribution, we rely on functionals such as

Kolmogorov-Smirnov, Cramér-von-Mises and Anderson-Darling, as described in Section 5.3. The

statistics achieve their respective distributions by Theorem 1 and continuous mapping theorem.

5.3 Algorithm outline

STEP 1 Order the sample {(xi, zi, yi)}ni=1 in the ascending order of x. Without a loss of gen-

erality, we will assume that the original sample is already ordered in this way.

STEP 2 Find a constrained estimator m̂B(·, ŝ) under HB
0 in (22) together with estimator γ̂ of

γ0 and compute the residuals ûi = yi − m̂B (xi; ŝ)− z′iγ̂, i = 1, ..., n.

Let PLj ;j(x) denote the Lj-dimensional vector of base B-splines on [sj−1, sj], j = 1, . . . , J+

1, computed at x. The estimation uses the long system P ≡ (PL1;1(x)
′, . . . ,PLJ+1;J+1(x)

′)′,

However, the constrained estimation under HB
0 results in some binding constraints. Once

the binding constraints are enforced, we end up with a much smaller system of relevant

base B-splines. We can refer to it as the system of “effective polynomials”and denote it as

P̃(x). Let

P̃ k ≡ (P̃(xk)
′, z′k)

′.
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STEP 3 For each i = 1, . . . , n, compute the new residual

v̂i = ûi − P̃
′
i

( n∑
k=1

P̃ kP̃
′
k1(xk ≥ xi)

)+ n∑
k=1

P̃ k1(xk ≥ xi)ûk. (33)

STEP 4 Compute the estimate of the variance of ui, σ
2
u, as σ̆

2
u = 1

n

∑n
i=1 ŭ

2
i , where ŭi are

unconstrained residuals ŭi = yi − m̆B (xi; s̆)− z′iγ̆ (details on how to obtain m̆B (xi; s̆) are

given later).

STEP 5 Compute M̃ñ(xi) =
1√
ñ

∑ñ
k=1 v̂k1(xk ≥ xi) and calculate the values of standard func-

tionals such as the Kolmogorov-Smirnov, Cramér-von-Mises and Anderson-Darling defined

respectively as

KSñ = sup
i=1,..,n

∣∣∣∣∣M̃n(xi)

σ̆u

∣∣∣∣∣ , CvMñ =
ñ∑

i=1

M̃n(xi)
2

nσ̆2u
, ADñ =

n∑
i=1

M̃n(xi)
2/n

σ̆2uF̂X(xi)
, (34)

where F̂X denotes the empirical c.d.f. of X.9 Compare them to the critical values

KS∗
ñ(α0), CvM

∗
ñ(α0), AD∗

ñ(α0), respectively, for a chosen significance level α0. If. e.g.,

KSñ > KS∗
ñ(α0), reject the null by Kolmogorov-Smirnov at the significance level α0.

Conducting STEP 1 In the first step we estimate the regression function m under the null

hypothesis (22). For that we approximate m on each subinterval [sj−1, sj] by B-spline mB;j as

defined in (13) and the approximation on the whole domain is described by a join in (14). The

constraints in T{(qj ,Lj)}J+1
j=1 ,s

incorporate (17)-(18) which guarantee sufficient smoothness.

The fundamental difference between our approach and the approach in Komarova and Hidalgo

(2023) is that here we do not take switch points sj, j = 1, . . . , J + 1, as known but estimate

them as well. As we will see, this leads not to just complications in the constrained estimation

but also to significant theoretical complication in the testing methodology due to the need to

control for the estimation error in these switch points.

The idea is to consider the objective function

Q̂∗ (s, βall, γ) =
1

n

n∑
i=1

(yi −mB(xi; s)− z′iγ)
2

9. One could, of course, center the process M̃ñ(x) to ensure that it converges to a Brownian bridge in-
dexed by the empirical c.d.f. of X. Then ADñ would be defined in a standard manner as follows: ADñ =∑ñ

i=1
M̃ñ(xi)

2/ñ

σ̆2
uF̂X(xi)(1−F̂X(xi))

.

31



and then solve the problem

min
s,βall,γ

Q̂∗ (s, βall, γ) (35)

subject to the constraints

s1 < s2 < . . . < sJ , (36)

βall ∈ T{(qj ,Lj)}J+1
j=1 ,s

. (37)

First of all, let us note that due to the requirement (7) on the functional properties in classes

Mj, j = 1, . . . , J + 1, in the overwhelming majority of applications, the properties in each

Mj will be described by conditions on the derivatives of m (potentially on combinations of

several derivatives). In cases when each Mj is described by inequalities on linear combinations

of derivatives, all the constraints in T{(qj ,Lj)}J+1
j=1 ,s

are linear inequalities10. This was illustrated

earlier in the context of the U-shape property in Example 1. Thus, constraints (37) in such

scenarios are especially easy to implement. However, the optimization is complicated by the fact

that the switch points are unknown. The locations of switch points determine knots points on

each subinterval and the values of the polynomials on the B-spline bases.

We can see two main approaches to such optimization. The first approach would be to use the

closed-form expressions for B-spline base polynomials when programming the objective function

in (35). These closed form expressions would explicitly account for the knots points which, in

their turn, depend on the choice of switch points. Then non-linear optimization tools can be

used.

Another approach, which may especially be convenient when dealing with a small number J of

switch points, would be to conduct the grid search. Choose a grid on [x, x], say of R points, and

select all possible J-dimensional subsets from these R points. In these selected subsets J points

are naturally ordered and can be treated as candidates for the set of switch points. Then the

approximation (14) is constructed taking these points as candidate points for partitioning and

then the problem (35) is solved subject to (37) only. In the end we select the sequence of switch

point that delivers the smallest value of the objective function. Of course, such a grid search

would result in a program conducting the estimation for
(
R
J

)
subsets but, again, may be feasible

for small values of J and especially in situations when there is only one switch point.

10. Equalities, of course, can be represented through inequalities.
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Conducting STEP 2 In this step we need to define the system of “effective polynomials” by

enforcing the biding constraints. Once again, this may be convenient to illustrate using U-shape

as an main example. In this case if in the constrained estimate b̂all of βall we have

b̂all,h1 = b̂all,h1+1 = . . . = b̂all,h2

for some indices h1 < h2, and b̂all,h1−1 ̸= b̂all,h1 , b̂all,h2 ̸= b̂all,h2+1, then instead of h2 − h1 + 1

different respective base B-splines we will include the sum of all these h2−h1+1 base B-splines

as one polynomial into P̃(x).

Conducting STEP 3 is straightforward. It comes down to computing the projection of

{vk}nk=i on {P̃(xk)}nk=i and then using the projection coefficient to compute the new residual

for i. This can be conducted by recursive least squares.

Conducting STEP 4 involves finding an unconstrained estimator m̆B(xi). This estimator can

be found e.g. by either solving

min
βall,γ

Q̂∗ (ŝ, βall, γ)

subject to only suitable smoothness constraints in (37) and with ŝ taken from the constrained

estimation. Alternatively, one can use just one system of base B-splines on the whole interval

[x, x] and conduct unconstrained nonparametric estimation using that base.

Conducting STEP 5 is straightforward.

5.4 Bootstrap

Although our test statistic has a pivotal distribution and allows asymptotic testing, the perfor-

mance may not be the best in small samples. As an alternative, we provide a valid bootstrap

algorithm.

STEP 1 Let m̃B(xi, ŝ) and γ̃ be the estimators analogous to m̂B(xi; ŝ) and γ̂ but evaluated
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without the constraints11. Compute the unconstrained residuals as:

ε̃i = yi − m̃B(xi, ŝ)− γ̃′zi.

STEP 2 Draw a random sample from the empirical distribution of the unconstrained residu-

als centered at zero:
{
ε̃i − 1

n

∑n
j=1 ε̃j

}n

i=1
, denote it by {ε∗i }

n
i=1. Construct the bootstrap

outcomes y∗i using the constrained estimators:

y∗i = m̂B(xi; ŝ) + γ̂′zi + ε∗i .

STEP 3 Compute the bootstrap estimators m̂∗
B(xi, ŝ

∗) from (5.4). Use them to construct the

bootstrap residuals

ε̂∗i = y∗i − m̂∗
B(xi, ŝ

∗)− γ̂∗
′
zi.

Use them to find the value of the bootstrap statistic:

√
n (TK∗(x))

=
1√
n

∑
i∈G

(
ε̂∗i − P̃

′
i

(
1

n

n∑
k=1

P̃ kP̃
′
k1(xk ≥ x̃i)

)+
1

n

n∑
k=1

P̃ kε̂
∗
k1(xk ≥ x̃i)

)
1(xi < x).

Theorem 2. Under conditions C1-C3:

√
n (TK∗(x))

weakly
====⇒ σuB(FX(x))

in probability.

11. Note that we use the same set of knots as in the constrained case.
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6 Extensions

6.1 Extended setting

In the extended setting, we allow the response variables y to depend on other covariates z in a

parametric way. To be more specific,

yi = m(xi) + ψ(zi, γ0) + ui, (38)

E[ui|xi, zi] = 0. (39)

Function m ∈ C1 [x, x] is unknown, whereas ψ(·, ·) is a known function, and γ0 ∈ Rk is an

unknown finite-dimensional parameter.

Now, of course, an additional issue will be identifying γ0 in addition to identifying the ordered

sequence of switch points. A popular choice of function ψ in the empirical work will be ψ(z, γ0) =

z′γ0.

7 Monte-Carlo simulations

In Scenarios 1-3 we consider

y = m(x) + γ′0z + u, u ∼ N(0, σ2)

Subscenarios labelled A. we will have no additional covariates – thus, we will take it as given

that γ0 = 0. We will take x to be uniformly distributed on [0, 1].

Subscenarios labelled B. we will take γ0 = −2 and treat γ0 as unknown in our estimation. We

will take x and z to be uniformly distributed on [0, 1] and independent.

Subscenarios labelled C. we will take γ0 = −2 and treat γ0 as unknown in our estimation. We

will take x and z to be

x = 0.8w1 + 0.2v,

z = 0.25− 0.25w2 + 0.75v,
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Figure 3: Graphs of functions m(·) in Scenarios 1-1 and 1-2.

where w1, w2 and v are uniformly distributed on [0, 1] and mutually independent. Thus, on this

subscenarios z will be correlated with the base B-splines.

Scenario 1. We consider several sub-scenarios within this scenario. Sub-scenarios 1-j, j = 1, 2, 3,

can be described as

m(x) = −0.75(0.2− x)2 + 0.415 log(1 + x) (1-1),

m(x) = −0.75(x− 0.5)(0.2− x)2 + 0.415 log(1 + x) (1-2),

m(x) = 0.25(0.2− x)3 + 0.415 exp(−80(x− 0.2)2) (1-3),

and σ is taken to be 0.05 (the findings under H0 are quite robust with respect to the value of σ).

The graphs of the functions in Scenarios 1-1 and 1-2 are given in Figure 3. The graphs of the

function in Scenario 1-3 as well as its derivative are given in Figure 4.

We start with sub-scenarios 1-jA, j = 1, 2, 3, we have γ0 = 0 (in other words, there is no control

for other covariates).

We apply our B-spline and P-spline methodology to test an inverse U-shape in m. Results are

given in Tables 1-3.
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A B C
Setting Method B-splines P-splines B-splines P-splines B-splines P-splines

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%
L′
1 = L′

2 = 4 h KS 0.076 0.048 0.088 0.042 0.072 0.028 0.08 0.058 0.0675 0.0375 0.0724 0.05
N = 1000 CvM 0.08 0.05 0.092 0.06 0.07 0.02 0.098 0.042 0.0875 0.045 0.09 0.045
σ = 0.05 AD 0.07 0.042 0.09 0.058 0.086 0.026 0.096 0.038 0.0775 0.04 0.1 0.05
L′
1 = L′

2 = 6 KS 0.074 0.03 0.085 0.0325 0.074 0.028 0.1 0.045 0.0575 0.035 0.0825 0.0325
N = 1000 CvM 0.074 0.03 0.085 0.035 0.078 0.028 0.0975 0.0525 0.095 0.0475 0.0975 0.05
σ = 0.05 AD 0.07 0.038 0.0775 0.035 0.07 0.032 0.1 0.0525 0.08 0.04 0.0725 0.045
L′
1 = L′

2 = 9 KS 0.088 0.052 0.085 0.045 0.068 0.03 0.098 0.058 0.0925 0.045 0.0925 0.045
N = 1000 CvM 0.102 0.048 0.095 0.05 0.072 0.038 0.098 0.06 0.095 0.065 0.095 0.065
σ = 0.05 AD 0.088 0.048 0.0875 0.045 0.076 0.034 0.09 0.056 0.0925 0.0575 0.0925 0.575

Table 1: Test for an inverse U-shape in Scenario 1-1.

A B C
Setting Method B-splines P-splines B-splines P-splines B-splines P-splines

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%
L′
1 = L′

2 = 4 KS 0.052 0.018 0.064 0.024 0.074 0.026 0.095 0.0525 0.0625 0.025 0.08 0.0275
N = 1000 CvM 0.066 0.028 0.084 0.042 0.086 0.038 0.095 0.0425 0.0625 0.035 0.0875 0.0375
σ = 0.05 AD 0.068 0.032 0.094 0.032 0.084 0.03 0.08 0.0525 0.06 0.0225 0.095 0.0425
L′
1 = L′

2 = 6 KS 0.074 0.028 0.0925 0.0425 0.066 0.024 0.09 0.048 0.0825 0.05 0.1075 0.05
N = 1000 CvM 0.078 0.03 0.0925 0.0525 0.056 0.026 0.072 0.034 0.1175 0.0475 0.1 0.0475
σ = 0.05 AD 0.072 0.028 0.085 0.0425 0.054 0.02 0.074 0.046 0.105 0.0525 0.075 0.0375
L′
1 = L′

2 = 9 KS 0.09 0.046 0.09 0.046 0.09 0.05 0.085 0.0475 0.115 0.07 0.1 0.0475
N = 1000 CvM 0.088 0.052 0.088 0.052 0.106 0.048 0.0875 0.045 0.1225 0.0725 0.0925 0.0475
σ = 0.05 AD 0.09 0.05 0.09 0.05 0.086 0.062 0.0925 0.05 0.1325 0.08 0.0975 0.0425

Table 2: Test for an inverse U-shape in Scenario 1-2.

A B C
Setting Method B-splines P-splines B-splines P-splines B-splines P-splines

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%
L′
1 = L′

2 = 4 KS 1 1 0.745 0.4675 1 0.998 0.72 0.5025 1 1 0.33 0.0675
N = 1000 CvM 1 1 0.6075 0.4275 1 0.998 0.5425 0.365 1 1 0.295 0.0575
σ = 0.05 AD 1 0.996 0.62 0.4375 1 1 0.5 0.2925 1 0.995 0.1025 0.0375
L′
1 = L′

2 = 6 KS 0.082 0.028 0.1 0.044 0.086 0.042 0.095 0.06 0.1025 0.05 0.0975 0.045
N = 1000 CvM 0.084 0.04 0.098 0.048 0.078 0.038 0.0925 0.045 0.1 0.045 0.1 0.045
σ = 0.05 AD 0.084 0.044 0.096 0.044 0.076 0.024 0.0975 0.04 0.0775 0.05 0.0825 0.0475
L′
1 = L′

2 = 9 KS 0.124 0.052 0.08 0.0375 0.084 0.036 0.0775 0.035 0.085 0.0275 0.0875 0.0425
N = 1000 CvM 0.132 0.052 0.095 0.0425 0.092 0.054 0.09 0.0525 0.0625 0.04 0.0875 0.055
σ = 0.05 AD 0.118 0.058 0.09 0.05 0.092 0.04 0.09 0.0475 0.065 0.025 0.0925 0.04

Table 3: Test for an inverse U-shape in Scenario 1-3.
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(a) Function in 1-3. (b) Derivative of function in 1-3.

Figure 4: Graphs of function m(·) and it derivative in Scenario 1-3.

(a) L′
1 = L′

2 = 4 (b) L′
1 = L′

2 = 6 (c) L′
1 = L′

2 = 9

Figure 5: Typical B-spline fits of function m(·) in Scenario 1-3.

A particularly interesting case in this setting is the testing result in Table 3 where we see

drastically different results for L′
1 = L′

2 = 4 compared to other cases of L′
1 = L′

2 = 6 and L′
1 =

L′
2 = 9. The intuition for this can be obtained from Figure 4, where we see that the derivative

of function m is close to constant on a subinterval. Since our bootstap draws residuals from the

unconstrained B-splines fit, the drastic differences between unconstrained and constrained fits

in that subinterval can create the high rejection rate. The typical B-splines fits with an adaptive

choice of the turning point for our three cases of (L′
1, L

′
2) are given in Figure 5. What we see is

that for the case L1 = L′
2 = 4 the unconstrained B-splines typically estimates the function as

being increasing on a part of the subinterval with the derivative close to zero, which explains

rejection rates for that case in Table 3. This situation is no longer the case when L′
1 = L′

2 = 6

or L′
1 = L′

2 = 9, as can be seen from typical fits in 5 as well.

Scenario 2. In Scenario 2 we usem(x) = x−a−6(x−a)2+8(x−a)3. The graphs of this function
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(a) a = 0.05. (b) a = 0.1

Figure 6: Graphs of functions in Scenario 2.

for a = 0.05 and a = 0.1 are given in Figure 6. As we can see, the functions are not U-shaped

but it is a difficult case to reject U-shape as its violations only happen in a small domain near

one of the support ends. It is harder to reject U-shape for a = 0.05 tan for a = 0.1.

8 Applications

8.1 “The ‘Out of Africa’ Hypothesis, Human Genetic Diversity, and

Comparative Economic Development”, by Q.Ashraf and O. Ga-

lor, American Economic Review, 2013

The paper argues that in the course of the prehistoric exodus of Homo sapiens out of Africa,

genetic diversity has had a persistent hump-shaped effect on the the logarithm of population

density and on comparative economic development. The paper contains many various findings

related to the presence or absence of hump-shaped effects. The authors use quadratics in all their

specifications to establish the presence or absence of hump shapes.

We apply our method and compare our results to Ashraf and Galor (2013) Table 4, which contains

robustness checks to using alternative distances. It is given in Figure 7. The authors’ conclusion

is that “the results presented in Table 4 indicate that migratory distance from East Africa is

the only concept of distance that confers a significant nonmonotonic effect on log population
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a = 0.05 a = 0.1
Setting Method B-splines P-splines B-splines P-splines

10% 5% 10% 5% 10% 5% 10% 5%
L′
1 = 4, L′

2 = 4 KS 1 1 1 1 1 1 1 1
N = 1000 CvM 0.998 0.992 1 1 1 1 1 1
σ = 0.05 AD 1 1 1 1 1 1 1 1
L′
1 = 6, L′

1 = 6 KS 1 1 1 1 1 1 1 1
N = 1000 CvM 1 1 1 1 1 1 1 1
σ = 0.05 AD 1 1 1 1 1 1 1 1
L′
1 = 9, L′

2 = 9 KS 1 1 1 1 1 1 1 1
N = 1000 CvM 1 1 1 1 1 1 1 1
σ = 0.05 AD 1 1 1 1 1 1 1 1

L′
1 = 4, L′

2 = 4 KS 0.792 0.654 0.8475 0.795 1 1 1 1
N = 1000 CvM 0.636 0.448 0.7425 0.64 1 1 1 1
σ = 0.1 AD 0.908 0.812 0.92 0.88 1 1 1 1
L′
1 = 6, L′

1 = 6 KS 0.858 0.756 0.89 0.785 1 1 1 1
N = 1000 CvM 0.786 0.664 0.83 0.755 1 1 1 1
σ = 0.1 AD 0.95 0.904 0.95 0.925 1 1 1 1
L′
1 = 9, L′

2 = 9 KS 0.874 0.78 0.865 0.8025 1 1 1 1
N = 1000 CvM 0.8 0.678 0.8325 0.77 1 0.992 1 1
σ = 0.1 AD 0.964 0.934 0.9525 0.94 1 1 1 1

L′
1 = 4, L′

2 = 4 KS 0.132 0.066 0.164 0.096 0.748 0.536 0.732 0.55
N = 1000 CvM 0.144 0.084 0.186 0.1 0.688 0.486 0.668 0.564
σ = 0.25 AD 0.25 0.152 0.262 0.158 0.876 0.714 0.872 0.764
L′
1 = 6, L′

1 = 6 KS 0.188 0.086 0.198 0.136 0.794 0.62 0.8075 0.6725
N = 1000 CvM 0.196 0.11 0.246 0.16 0.73 0.544 0.73 0.5675
σ = 0.25 AD 0.286 0.17 0.32 0.228 0.876 0.738 0.8625 0.7675
L′
1 = 9, L′

2 = 9 KS 0.17 0.106 0.208 0.136 0.65 0.526 0.672 0.532
N = 1000 CvM 0.2 0.102 0.24 0.166 0.576 0.39 0.548 0.438
σ = 0.25 AD 0.278 0.202 0.324 0.222 0.728 0.58 0.728 0.596

Table 4: Test for U-shape in Scenario 2.
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a = 0.05 a = 0.1
Setting Method B-splines P-splines B-splines P-splines

10% 5% 10% 5% 10% 5% 10% 5%
L′
1 = 4, L′

2 = 4 KS 1 1 1 1 1 1 1 1
N = 1000 CvM 0.996 0.992 1 1 1 1 1 1
σ = 0.05 AD 1 1 1 1 1 1 1 1
L′
1 = 6, L′

1 = 6 KS 1 1 1 1 1 1 1 1
N = 1000 CvM 0.998 0.998 1 1 1 1 1 1
σ = 0.05 AD 1 1 1 1 1 1 1 1
L′
1 = 9, L′

2 = 9 KS 1 1 1 1 1 1 1 1
N = 1000 CvM 0.99 0.9475 1 1 1 1 1 1
σ = 0.05 AD 1 1 1 1 1 1 1 1

L′
1 = 4, L′

2 = 4 KS 0.796 0.65 0.904 0.83 1 1 1 1
N = 1000 CvM 0.672 0.486 0.864 0.752 1 1 1 1
σ = 0.1 AD 0.91 0.814 0.954 0.902 1 1 1 1
L′
1 = 6, L′

1 = 6 KS 0.78 0.662 0.8725 0.8075 1 1 1 1
N = 1000 CvM 0.66 0.522 0.8175 0.7625 1 0.998 1 1
σ = 0.1 AD 0.888 0.822 0.9475 0.9175 1 1 1 1
L′
1 = 9, L′

2 = 9 KS 0.648 0.448 0.71 0.535 1 1 1 1
N = 1000 CvM 0.544 0.366 0.6775 0.4825 1 1 1 1
σ = 0.1 AD 0.816 0.676 0.8325 0.7057 1 1 1 1

L′
1 = 4, L′

2 = 4 KS 0.162 0.09 0.195 0.1125 0.662 0.484 0.7725 0.65
N = 1000 CvM 0.184 0.118 0.2075 0.1375 0.662 0.468 0.6825 0.5575
σ = 0.25 AD 0.276 0.16 0.2575 0.19 0.818 0.684 0.8225 0.75
L′
1 = 6, L′

1 = 6 KS 0.138 0.068 0.195 0.1 0.622 0.406 0.6775 0.4475
N = 1000 CvM 0.15 0.096 0.1875 0.105 0.594 0.352 0.6075 0.4675
σ = 0.25 AD 0.214 0.122 0.245 0.14 0.722 0.47 0.7725 0.6125
L′
1 = 9, L′

2 = 9 KS 0.184 0.086 0.245 0.1725 0.6 0.436 0.6475 0.5175
N = 1000 CvM 0.172 0.1 0.2625 0.1725 0.422 0.314 0.5725 0.4775
σ = 0.25 AD 0.278 0.162 0.31 0.185 0.62 0.47 0.6775 0.5725

Table 5: Test for U-shape in Scenario 2-B.
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Figure 7: Table 4 from Ashraf and Galor (2013).

density.” We want to analyze and assess these findings using our methodology.

Our first series of tests is about the specification

ln pd1500 = α + βdist+ γdist2 + z′δ + u, (40)

where dist is a distance notion from Figure 7, z is the set of 4 controls used there in every

column, and u is the error term.

Finding 1, The quadratic specification in (40) is rejected at the 5% significance level for

Columns 2-5 in Table 4 in Ashraf and Galor (2013).

For this finding we use an approach based on Khmaladze’s transformation but within the con-
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Kolmogorov-Smirnov Cramer-von-Mises Anderson-Darling
90% 95% cv 99% cv 90% 95% cv 99% cv 90% 95% cv 99% cv

Column (1) < < < < < < < < <
Column (2) < < < > > > > > <
Column (3) > > > > > > > > >
Column (4) < < < > > > > < <
Column (5) > > < > > < < < <

Table 6: Ashraf and Galor (2013). Test for quadratic specifications in Table 4 in Ashraf and Galor

(2013). “cv” stands for the critical value. All critical values are based on 1000 bootstrap draws. > (<)

means that the test statistic for the functional indicated in the first row is greater (is less) than the

respective critical value for that functional.

text of a semiparametric regression (rather than a nonparametric one) as discussed in Stute,

Thies, and Zhu (1998). Based on that approach, quadratic specifications in distance (plus other

covariates) in Table 4 in Ashraf and Galor (2013) are rejected for Columns (2)-(5) at the 5%

level by at least one of our testing functionals. More detailed results are given in Table 6, where

we can see that for Columns (2), (3) and (5) the quadratic specifications are rejected by at

least two functionals we employ (for Column (3) it is rejected by all three functionals). Results

for Column (1), thus, can be taken as supportive of Ashraf and Galor (2013) findings for that

particular specification, which cannot be said for specifications in other columns used to justify

the use of one particular migratory distance in Column (1).

An immediate conclusion here is that robustness to alternative distances needs to be analyzes

through more general hump-shapes that go beyond quadratics. This naturally brings us to using

our method.

For a distance of interest in a respective column we choose cubic B-splines on both sides of a

candidate switch point with intervals on both sides being uniformly divided into 4 subintervals.

This results in 12 base splines overall but the constraints of smoothness of the function at the

switch point effectively reduce this number of unknown parameters with respect to the distance

variable to 9 (for comparison, in the quadratic specification it is 3 unknown parameters). Table

7 shows the results of performing the test using our method with B-splines. As we can see, for

models analogous to those in Ashraf and Galor (2013) Table 4 which differ from them only in

a more general specification with respect to a distance variables, a hump-shape relation with

respect to distance is not rejected for distances and in all of the columns.

These conclusions are very different from those reached by quadratic specifications used in Ashraf
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Kolmogorov-Smirnov Cramer-von-Mises Anderson-Darling
90% cv 95% cv 99% cv 90% cv 95% cv 99% cv 90% cv 95% cv 99% cv

Column (1) < < < < < < < < <
Column (2) > < < < < < < < <
Column (3) < < < < < < < < <
Column (4) < < < < < < < < <
Column (5) < < < < < < < < <

Table 7: Ashraf and Galor (2013) data. B-splines based test for hump-shaped specifications in Table

4 in Ashraf and Galor (2013). All critical values are based on 1000 bootstrap draws. > (<) means that

the test statistic for the functional indicated in the first row is greater (is less) than the respective

critical value for that functional.

and Galor (2013). Namely, the aerial distance from East Africa and migratory distance from

Tokyo have systematic hump-shaped effect on the logarithm of population density in 1500 CE.

A reader may say that our approach to testing hump-shaped relationship potentially allows

only weak monotonicity on both sides of the turning points and, thus, potentially hump-shaped

relations we find could exhibit a constant effect before or after the estimated turning point.

To address this, we look at our B-splines hump-shaped fit, compute a) the difference between

the fitted value at the lowest value of the distance and the fitted value at the switch point; b)

the difference between the fitted value at the switch point and the fitted value at the largest

value of the distance, and then we construct a 95% bootstrap confidence intervals for both these

differences. The results are given in Table 8 and allow us to conclude that for Columns (1),

(2) and (4) both parts of the fitted curve are strictly monotone at the 5% significance level.

For column (3) the first part (increasing) is not rejected to be constant and for Column (5)

the second part (decreasing) i snot rejected to be constant. Since our constrained estimation

imposes difference 1 to be non-negative and difference 2 to be non-positive, what what be more

informative for Columns (3) and (5) is the percentage of analogous bootstrap differences that

are close to 0. In the case of Column (5), difference 2 is within 10−6 distance from 0 in 5.9%

samples (so, 90% CI would have 0 on the boundary as well).

for at the 5% significance level the fitted function has a strict increase over the domain before

the estimated switch point and a strict decreases after it.

Finally, taking into account the small size of the sample (just 145 observations) and the presence

of additional controls in some specifications in Table 4, we use P-splines that is an effective

tool for dealing with potential overfitting and avoiding fitted lines that are “too wiggly.” For
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difference 1 95% CI difference 2 95% CI
Column (1) 1.3061 (0.3611,2.8020) -3.2675 (-4.1464, -2.2730)
Column (2) 0.9621 (0.1208, 2.4071) -1.2410 (-2.2153,-0.8581)
Column (3) 0.2132 (1.7 · 10−13, 1.0135) -2.9977 (-3.8233,-2.0648)
Column (4) 0.4352 (0.0044,1.8457) -3.3684 (-4.7242,-2.2614)
Column (5) 1.3980 (1.0919,2.7541) -0.4366 (−2.2800,−1.5 · 10−13)

Table 8: Ashraf and Galor (2013) data. Analysis whether there are statistically significant changes

in the hump-shaped B-splines fit before the estimated switch point and also after it. All critical values

are based on 1000 bootstrap draws.

Kolmogorov-Smirnov Cramer-von-Mises Anderson-Darling
90% cv 95% cv 99% cv 90% cv 95% cv 99% cv 90% cv 95% cv 99% cv

Column (1) < < < < < < < < <
Column (2) < < < < < < < < <
Column (3) > < < < < < < < <
Column (4) < < < < < < < < <
Column (5) < < < < < < < < <

Table 9: Ashraf and Galor (2013) data. P-splines based test for hump-shaped specifications in Table

4 in Ashraf and Galor (2013). All critical values are based on 1000 bootstrap draws. > (<) means that

the test statistic for the functional indicated in the first row is greater (is less) than the respective

critical value for that functional.

P-splines, we penalize second differences of coefficients choosing the same penalty on different

sides of the switch point. The penalty is chosen by the cross validation approach in Eilers and

Marx (1996). If fort a model the penalty is rather large then the fitted regression mean would

have a shape closer to a quadratic one.

Test results using P-splines are given in Table 9. The substantive conclusions are largely similar

to those in Table 7.

Finally, we present the following fitted curves for all the columns: first, obtained by quadratic

specification in Ashraf and Galor (2013); second, obtained by our B-spline methodology under

the hump-shape constraint; third, obtained by our P-splines methodology with cross-validated

penalties enforcing the hump-shape constraint, these are contained in Figure 8.

As we can see for the model in Column (1), the fit by P-splines is similar to the one provided

by the quadratic function. However, for other columns the results are very different. For the

model in Column (2), the quadratic specification gives us a monotonically decreasing fit on the

domain of the distance, whereas both nonparametric fits indicate a hump-shaped pattern (recall
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(a) Column (1) (b) Column (2)

(c) Column (3) (d) Column (4)

(e) Column (5)

Figure 8: Fitted curves for models in AG Table 4.
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that they are not rejected by either B-splines or P-splines) with visible asymmetries around the

turning point. For the model in Column (4) both non-parametric fits indicate a turning point

much further to the right than that given by the quadratic fit. Also, in either non parametric

fit the decrease after the turning point is much sharper compared to the increase before that

(for P-splines the curve before the turning point looks almost flat even though statistically it is

not). For the model in Column (5), the quadratic specification fit is U-shaped rather than hump-

shaped (recall that in Table 4 in Ashraf and Galor (2013) that it is statistically insignificant at

the 5% level) which is drastically different from the hump-shaped nonparametric fits exhibiting

visible asymmetry around the turning point.

In summary, our methodology finds relationship between migratory distance and the log popu-

lation density in 1500 CE in to be monotonic for specifications in Columns (3) and (5) (at the

5% level). Our findings for Column (1), including the estimation results by P-splines, are largely

consistent with Ashraf and Galor (2013). Our findings for models and distances in Columns

(2)-(5) are different from those in Ashraf and Galor (2013). Namely, in columns (2) and (4) we

find hump-shaped relationship between migratory distances and the log population density in

1500 CE and they are different from quadratic ones. In Column (3) we do not reject at 5% level

that find a monotonic weakly decreasing relationship, which is consistent with Ashraf and Galor

(2013). However, we do have a statistically significant change in the monotonic relationship if we

compare the values of our fitted function at the lower and upper support points (this is different

from lack of statistical significance conclusions in Ashraf and Galor (2013)). In Column (5) we

do not reject at 5% level that find a monotonic weakly increasing relationship and we also find

the change in this monotone function over the domain to be statistically significant, with both

of these features being different from findings in Ashraf and Galor (2013)). These differences

are best explained by the fact that in Columns (2)-(5) the best fitted curves under the null of

a hump-shape exhibit striking asymmetries around the turning points which is not allowed by

quadratic specifications.
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(a) Data (b) Fitted curves

Figure 9: Left panel: data on log of GDP per capita and child penalty. Right panel: Fitted
curves for the model (41).

9 Application 2: Child penalty

We consider the country-level model12

Child Penaltyi = m(log(GDP per capitai)) + βEmployment Gapi + ui (41)

E[ui| log(GDP per capitai), Employment Gapi] = 0,

and test

H0 : m is hump-shaped.

The employment gap between women and men can reflect societal norms, policies, and labor

market dynamics that influence the child penalty. Larger employment gaps e.g. might indicate

less support for working mothers, which could exacerbate the child penalty.

The left panel of Figure 9 plots the data (log(GDP per capita), Child Penalty) and the right

hand plots the fitted curves m(log(GDP per capita)) obtained by a) a quadratic specification

m(log(GDP per capita)) = γ0+γ1Child Penalty+γ2Child Penalty
2, b) B-spline specification

for m(·), and c) B-spline specification for m(·) estimated with the use of penalty on the second-

differences of coefficients as explained earlier (so P-splines).

As we can see, the quadratic specification finds a strictly increasing curve within the domain

12. We are grateful to Camille Landais and Gabriel Leite-Mariante for providing us with the data.
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Kolmogorov-Smirnov Cramer-von-Mises Anderson-Darling
90% cv 95% cv 99% cv 90% cv 95% cv 99% cv 90% cv 95% cv 99% cv
> > > > > > > > <

Table 10: Child penalty data. Test for a quadratic form of m(·) in (41). “cv” stands for the critical

value. All critical values are based on 1000 bootstrap draws. > (<) means that the test statistic for

the functional indicated in the first row is greater (is less) than the respective critical value for that

functional.

Kolmogorov-Smirnov Cramer-von-Mises Anderson-Darling
90% cv 95% cv 99% cv 90% cv 95% cv 99% cv 90% cv 95% cv 99% cv

B-splines < < < < < < < < <
P-splines < < < < < < < < <

Table 11: Child penalty data data. B-splines and P-splines based tests for hump-shaped m(·) in

(41). All critical values are based on 1000 bootstrap draws. > (<) means that the test statistic for

the functional indicated in the first row is greater (is less) than the respective critical value for that

functional.

of log of GDP per capita. We start by applying our test for testing the quadratic specification

of m(·) in (41) analogously to how it was conducted in the previous application. The results

are in Table 10. As we can see, all three type of tests reject a quadratic form of m(·) at the

5% significance level. Therefore, quadratics do not look like a suitable approach in capturing a

nonlinear relationship between log of GDP per capita and child penalty.

Our next step is to test the null hypothesis of hump-shape using B-splines and P-splines ap-

proach. We choose quadratic B-splines on both sides of a candidate switch point with intervals

on both sides being uniformly divided into 4 subintervals. This results in 10 base splines overall

but the constraints of smoothness of the function at the switch point effectively reduce this

number of unknown parameters with respect to the distance variable to 7 (compared to three

unknown parameters in a quadratic specification). The results are given in 11.

As we can see, the null of a hump-shaped relationship is not rejected at the 10% significance

level. The switch point is found to be 10.67 (on the grid of equidistant 1001 grid points in the

domain of log of GDP per capita).
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10 Conclusion

This paper develops a robust nonparametric methodology for testing shape constraints in re-

gression analysis, accommodating multiple shape changes across the domain of the regressor.

Our approach extends beyond conventional U-shaped or hump-shaped patterns to a broad class

of nonlinear shapes, including S-shapes, W-shapes. etc. Unlike previous methods that rely on

parametric assumptions or require predetermined switch points, our approach identifies turn-

ing points adaptively within the data. This allows for greater flexibility and more accurate

representation of complex nonlinear relationships, which are often misrepresented by simplistic

parametric polynomial (in particular, quadratic) models.

The theoretical contributions of this paper include ensuring that the adaptive estimation of

turning points does not compromise the statistical properties of the test statistics, both in finite

samples and asymptotically. Practically, the methodology improves the power and interpretabil-

ity of shape testing by reducing reliance on restrictive parametric forms. As our applications

demonstrate, standard parametric approximations can miss or distort true underlying relation-

ships, while our method captures these dynamics more precisely.

In summary, this paper provides a valuable tool for researchers across disciplines who require

a flexible, rigorous approach to testing complex shape constraints. The methodology broadens

the scope of nonparametric analysis in regression contexts, offering a unified framework that

can be applied to partially linear models (or partially parametric models more generally) and

expanded to incorporate multiple turning points. Future research may build on this work by

further refining the estimation of turning points and exploring additional applications in diverse

empirical settings.
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A Appendix A: Nonparametric vs quadratic fits,

The purpose of this Appendix is to illustrate that the choice of quadratic specifications can be

very misleading when one tries to estimate (inverse) U-shaped relations. Here we outline several

scenarios.
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We use the following setting: y = m(x)+ε, where ε ∼ N(0, σ2), x ∼ U[0, 1], and ε is independent

of x.

Scenario 1. m(x) = (x1/4 − 0.5)2, σ = 0.01. The turning for this regression function is 1/16

but it is not symmetric around this point. This can be seen in Figure 10 which shows one set of

generated data (1,000 points) from this model and a fitted line using a quadratic specification.

Figure 10: Scenario 1.

As we can be seen in 10, the fitted line is monotonic on the whole domain. Indeed, it turns

out that the use of quadratic specification results in the estimated turning point being negative

with probability almost 1. Figure 11 gives histograms for the estimated turning point in 500

simulations as well the basic summary statistics for those turning points in every sub-case (see

the captions), including the quadratic specification subcase in Panel (a). B-spline specifications

have a vastly superior performance to quadratic specifications, even though they seem to exhibit

a negative finite sample bias when estimating the switch point. This is not surprising given the

closeness of the switch point to the boundary. Also, with the sample size increase and the suitable

increase in the number of knots. the estimated switch points will converge in probability to the

true switch point 1/16.

m(x) = Φ(x−0.5
5

) · 11(x ≤ 0.5)
(
1− Φ(x−0.1

0.1
)
)
· 11(x > 0.5), σ = 0.01. The turning for this

regression function is 0.5 but it is not symmetric around this point and it is continuous at that

point but not differentiable (the left and the right derivatives exist and are finite, but they take

different values). This can be seen in Figure 12 which shows one set of generated data (500 points)

from this model and a fitted line using a quadratic specification and a B-splines specification

with an adaptive choice of a switch point.

55



(a) quadratic specification, n = 500.
mean = −2.8370, std = 1.3143
50th, 95th, 99th percentiles:
−2.5402, −1.5200, −1.2384

(b) cubic splines, 8 base splines on each side of the
turning point, n = 500.
mean = 0.0448, std = 0.0106
50th, 95th, 99th percentiles:
0.0433, 0.0636, 0.0784

(c) 5th degree splines, 13 base splines on each side of
the turning point, n = 2000
mean = 0.0522, std = 0.0180
50th, 95th, 99th percentiles:
0.0484, 0.0789, 0.0891

(d) cubic splines, 11 splines on each side of the turning
point, n = 2000
mean = 0.0482, std = 0.01
50th, 95th, 99th percentiles:
0.0473, 0.0651, 0.0744

Figure 11: Histograms and summary statistics of estimated switching points in Scenario 1 using
various specifications,. Results are obtained in 500 simulations.

Figure 12: Scenario 2.
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(a) quadratic specification, n = 500.
mean = 0.0524, std = 0.0497
50th, 95th, 99th percentiles:
−0.0449, 0.0116, 0.0413

(b) cubic splines, 8 base splines on each side of the
turning point, n = 500.
mean = 0.4998, std = 0.0017
50th, 95th, 99th percentiles:
0.4999, 0.5023, 0.5035

Figure 13: Histograms and summary statistics of estimated switching points in Scenario 2 using
quadratic and then B-splines specifications. Results are obtained in 500 simulations.

Figure 13 gives histograms for the estimated turning point in 500 simulations as well the basic

summary statistics for those turning points in every sub-case (see the captions), including the

quadratic specification subcase in Panel (a) and the B-spline specification in Panel (b). When

fitting B-splines, we connect two pieces on each side of a turning point as to, first, ensure continu-

ity only (consistent with the property of the original function) and, second, to ensure continuity

and differentiability at the switch point.B-spline fit also ensures a hump-shaped relation.

B Appendix

Proof of Proposition 1. First of all, note that function m(·) is identified as the regression

mean: m(x) = E[y|x]. Suppose, contrary to the statement of the proposition that there are two

different ordered sequences s1 < s2 < . . . sJ and s̃1 < s̃2 < . . . s̃J of switch points such that in

addition to (6) it holds that

m|[s̃j ,s̃j+1] ∈ Mj+1 ([s̃j, s̃j+1]) , j = 0, . . . , J, . (42)

let j0 be the minimum index such that sj0 ̸= s̃j0 . Without a loss of generality, suppose that sj0 <

s̃j0 . Using condition (7), we then have that on [sj0 , s̃j0 ] the regression function m(·) belongs to
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Mj0 ([sj0 , s̃j0 ]) (as implied by (42)) and also toMj0+1 ([sj0 , s̃j0 ]) (as implied by (6)). But according

to (8) the intersection Mj0 ([sj0 , s̃j0 ])∩Mj0+1 ([sj0 , s̃j0 ]) is empty, which gives us a contradiction.

Thus, we can conclude that the ordered sequence of switch points with the properties given in

(6) is unique. ■

Proof of Proposition 2. By Arzela-Ascoli theorem, Θ0 is relatively compact in the uniform

metric. Therefore, its closure Θ0 in the uniform metric is compact. We take Θ0 as our parameter

set, and, clearly, m(x) = E[y|x] ∈ Θ0.

To ensure the compactness of the sample parameter space, as required in the Newey and Powell

(2003) (see Appendix B.2), we use the Arzela-Ascoli theorem once again and obtain the relatively

compact set by imposing conditions on the parameters in the B-spline approximation captured

in the following definition of Θ̂:13

Θ̂ =

{
mB ∈ MT

{(qj ,Lj)}
J+1
j=1

: |βℓj ,j| ≤ A1 +∆1,
Lj|βℓj+1,j − βℓj ,j|

sj − sj−1

≤ A2 +∆2, ∀ℓj ∀j
}

for some positive constants ∆1 > 0 and ∆2 > 0.

As the sample parameter space, we consider the closure Θ̂ of Θ̂ in the uniform norm. The proof

of this proposition establishes, among other things, that every function from Θ0 can be well

approximated asymptotically in the uniform metric by functions from Θ̂.

We prove this consistency result by applying Lemma A.1 from Newey and Powell (2003) (see

Appendix B.2). Let us verify all of its conditions. Our population and sample objective functions

for the purpose of this proof are, respectively,14

Q(m(·)) = E[(y −m(x))2], Q̂ (mB(·; s)) =
1

n

N∑
i=1

(y −mB(xi; s))
2 .

Condition (i) in Newey and Powell (2003) (Appendix B.2) about m(·) being the unique argmin

of Q (up to almost everywhere) in Θ0 follows from the property of the conditional mean as an

optimiser and the fact that m(x) = E[y|x] a.e..

For condition (ii) in Newey and Powell (2003) (Appendix B.2), note that both Q and Q̂ are

obviously continuous in m and mB, respectively. Let us show that supm∈Θ0
|Q(m) − Q̂ (m) | =

13. The second condition in this definition is specific to having uniform knots inside each [sj−1, sj ] but could,
of course, be easily extended to allow for a different choice of knots.

14. Q̂(·) is, of course, Q̂∗(·) rewritten as a function of the approximation itself.
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op(1). For that, we can use Lemma A.2 in Newey and Powell (2003) (Appendix B.2) and note

that for any m̃, ˜̃m ∈ Θ0

∣∣∣Q̂(m̃)− Q̂
( ˜̃m)∣∣∣ = ∣∣∣∣∣ 1n

n∑
i=1

(
m̃(xi)− ˜̃m(xi)

)(
2m(xi) + 2ui − m̃(xi)− ˜̃m(xi)

)∣∣∣∣∣
≤ sup

[x,x]

∥m̃(x)− ˜̃m(x)∥ ·

(
4A1 +

1

n

n∑
i=1

|ui|

)
,

and of course, 1
n

∑n
i=1 |ui| = Op(1) implied by the assumption that ui has finite fourth moment.

Thus, by Lemma A.2 in Newey and Powell (2003) (see Appendix B.2) we can conclude that

sup
m∈Θ0

∣∣∣Q(m)− Q̂ (m)
∣∣∣ = op(1). (43)

Finally, for condition (iii), we want to show that for every m ∈ Θ0 there is a sequence

of mB ∈ Θ̂ such that supx |mB(x; s)−m(x)| = o(1). Note that Condition C2 automati-

cally implies that for every m ∈ Θ0 we can find an approximation mB ∈ MT
{(qj ,Lj)}

J+1
j=1

such that supx |mB(x; s)−m(x)| = O

(
1

(minj=1,...,J+1 Lj)
r

)
for some r > 1, which implies

supx |mB(x; s)−m(x)| = o(1). Let us show that we can take such an approximation mB to

satisfy constraints in the definition of Θ̂.

First, by B-spline properties,
∣∣∣βℓj ,j − dj+dj

2

∣∣∣ ≤ Dqj ,∞
dj−dj

2
, where [dj, dj] is the range of values of

mB(·; s) on [tℓj+1,j, tℓj+qj−1,j] (see De Boor (1978), p. 133), where tℓj ,j denotes the ℓj’s knot on

the interval [sj, sj+1] and Dqj ,∞ is a universal constant that does not depend on the system of

knots and only depends on the degree of B-splines on [sj, sj+1]. Since

∣∣dj − dj
∣∣ ≤ O

(
1

Lr
j

)
+ A2O

(
1

Lj

)
,

∣∣dj + dj
∣∣ ≤ 2A1 +O

(
1

Lr
j

)
,

then ∣∣βℓj ,j∣∣ ≤ A1 +O

(
1

Lj

)
≤ A1 +∆1

for large enough Lj.
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Analogously, we can use the same property for the derivative of the B-spline. We now have∣∣∣∣ qj(βℓj+1,j − βℓj ,j)

tℓj+1+qj ,j − tℓj+1,j

−
ej + ej

2

∣∣∣∣ ≤ Eqj−1,∞
ej − ej

2
,

where [ej, ej] is the range of values of m
′
B(·) on [tℓj+1,j, tℓj+qj−2] and Eqj ,∞ is a universal constant

that does not depend on the system of knots. Once can show that

|cj − cj| = O

(
1

Lr−1
j

)
, |cj + cj| ≤ 2A2 +O

(
1

Lr−1
j

)
.

Since tℓj+1+qj ,j − tℓj+1,j is proportional to 1
Lj

(tℓj+1+qj ,j − tℓj+1,j takes possible values of
sj−sj−1

Lj
, 2

sj−sj−1

Lj
, . . . , qj

sj−sj−1

Lj
), then

Lj|βℓj+1,j − βℓj ,j|
sj − sj−1

≤
∣∣∣∣ qj(βℓj+1,j − βℓj ,j)

tℓj+1+qj ,j − tℓj+1,j

∣∣∣∣ ≤ A2 +∆2

for large enough Lj.

Now it is only left to consider m ∈ Θ0\Int(Θ0), where Int(Θ0) denotes the interior of the set

Θ0. For such m we can always find m̃ ∈ Int(Θ0) such that

sup
x

|m(x)− m̃(x)| ≤ K0

(minj=1,...,J+1 Lj)
r

for some K0 > 0 (and even a faster rate by the definition of the boundary). Then, according to

the discussion above, we can find mB ∈ Θ̂ such that

sup
x

|m̃(x)−mB(x; s)| = O

(
1

(minj=1,...,J+1 Lj)
r

)
,

implying thus that supx |m(x)−mB(x; s)| = O

(
K̃0

(minj=1,...,J+1 Lj)
r

)
= o(1) as min

j=1,...,J+1
Lj → ∞.

■

Proof of Corollary 1. Suppose at least one ŝj is not consistent for sj. Let j0 be the small-

est index such that ŝj0 − sj0
p↛ 0. This means that there is ε1 > 0 and ε2 > 0 we have

P (|ŝj − sj| > ε1) ≥ ε2 on a subsequence of ŝj. Without a loss of generality, we can take that

P (ŝj0 < sj0 − ε1) ≥ ε2. But we then conclude that on the interval [sj0 − ε1, sj0 ] the subsequence

of m̂B(·) with a probability bounded away from zero uniformly approximates the property of the
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class Mj0+1, which contradicts the fact that the whole sequence m̂B(·) on [sj0 − ε1, sj0 ] converges

uniformly in probability to m(·) and on that interval m(·) has property Mj0 . Since classes Mj0

and Mj0+1 don’t intersect, we obtain a contradiction. Hence, all ŝj are consistent. ■

Proof of Proposition 3.

The rates of convergence of B-spline coefficients and the coefficients of the partial linear model

are standard. We focus on the rate of convergence of the switch point estiamtor.

In order to derive the rates we split the estimation procedure into two steps: in the first step we

fix s and find the parameters β̂(s), γ̂(s) which minimize the constrained optimization problem

treating the given value of s as a parameter, and in the second step we minimize the redefined

objective function Q̂(s) = Q̂∗(s, β̂(s), γ̂(s)) with respect to s only. Since ŝ minimizes Q̂(s):

∂Q̂(s)

∂s′

∣∣∣∣∣
s=ŝ

= 0 (44)

and by Taylor expansion around the true s0:

0 =
∂Q̂(ŝ)

∂s′
=
∂Q̂(s0)

∂s′
+
∂2Q̂(s0)

∂s∂s′
(ŝ− s0) + op

(∣∣ŝ− s0
∣∣) . (45)

Then:

ŝ− s0 =

(
∂2Q̂(s0)

∂s∂s′
+ op(1)

)−1
∂Q̂(s0)

∂s′
. (46)

We show that ∂Q̂(s0)
∂s′

is Op

(
1√
n

)
and ∂2Q̂(s0)

∂s∂s′
p−→ R for some invertible matrix R, hence the rate

of convergence of ŝ to s0 is Op

(
1√
n

)
15.

Let

L(s, β, γ, λ) = Q̂∗(s, β, γ) + λg(β)

be the Lagrangian of the constrained minimisation problem, where the inequality constraints are

listed as g(β) ≥ 0 and λ are the corresponding Lagrange multipliers. By the envelope theorem:

∂Q̂(s)

∂s′
=
∂L(β̂(s), γ̂(s), s, λ̂(s), µ̂(s))

∂s′
=
∂Q̂∗(β̂(s), γ̂(s), s)

∂s′
,

15. A faster rate of convergence can be achieved in the case where the estimated function has a discontinuity
(or discontinuity in a derivative) at the switch point, see e.g.Muller (1992). In applications where the researcher
has knowledge of these kinds of changes in behavior at ŝ alternative methods of estimation can be used to find
the switch point before estimating the remaining parameters.
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so to find the first derivative we only need to differentiate Q̂∗(s, β, γ) directly with respect to s

and evaluate at β̂(s), γ̂(s). For any j ∈ {1, 2, . . . , J}:

∂Q̂(s0)

∂sj
=

1

n

n∑
i=1

−2
(
yi − m̂B(xi; s

0)− γ̂′
(
s0
)
zi
) ∂m̂B(xi; s

0)

∂sj

=
1

n

n∑
i=1

−2

(
m(xi)− m̂B(xi; s

0) +
(
γ − γ̂

(
s0
))′

zi + ui

)
∂m̂B(xi; s

0)

∂sj︸ ︷︷ ︸
=Op(1)︸ ︷︷ ︸

Op

(
1√
n

)
= Op

(
1√
n

)
.

We now justify the rates listed above.

Using derivation in Lemma 2 and Lemma 3, and remembering that due to the envelope theorem

we only take the derivative with respect to the B-spline basis functions and not with respect to

β̂(s):

∂m̂B(x; s
0)

∂sj

=
∂m̂B(x; s

0)

∂x

((
s0j−1 − x

s0j − s0j−1

)
1
(
x ∈ [s0j−1, s

0
j)
)
+

(
x− s0j+1

s0j+1 − s0j

)
1
(
x ∈ [s0j , s

0
j+1)

))
= Op(1).

This term is stochastically bounded because the derivative of the spline function with respect

to x is bounded (we allow coefficients β̂(s) from a space Θ̂ which imposes a common bound of

A2+∆2 <∞ on the derivative of mB(·, s0) across all n and all possible values of x and the ratios(
s0j−1−x

s0j−s0j−1

)
1
(
x ∈ [s0j−1, s

0
j)
)
and

(
x−s0j+1

s0j+1−s0j

)
1
(
x ∈ [s0j , s

0
j+1)

)
are in [0, 1].

The fact that 1
n

∑n
i=1m(xi) − m̂B(xi; s

0) = Op

(
1√
n

)
follows from Lemma 5, in the special case

where we take s = s0 (this removes the approximation error due to using incorrect switch point).

Finally, 1
n

∑n
i=1 (γ − γ̂ (s0))

′
zi + ui = Op

(
1√
n

)
by standard results for rates of convergence of

the linear part of a partly linear model (e.g. Robinson (1988), this could also be shown directly

by the same arguments as in Lemma 5) and of i.i.d. random variables with bounded second

moments (e.g. Lindeberg-Levy CLT).

To find the expression for the second derivative of the objective function we introduce the
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shorthand notation for the residual:

ε̂i ≡ yi − m̂B (xi; s)− γ̂′zi. (47)

We have Q̂(s) = 1
n

∑n
i=1 ε̂

2
i and ∂Q̂(s)

∂s′
= 2

n

∑n
i=1 ε̂i

∂ε̂i
∂s′

, hence

∂2Q̂(s)

∂s∂s′
=

2

n

n∑
i=1

∂ε̂i
∂s′

∂ε̂i
∂s

+ ε̂i
∂2ε̂i
∂s∂s′

Let m(xi; s) denote the function providing the closest approximation to m(xi) which has a

switch point at s. Assuming that m(xi; s) is smooth and has bounded second derivatives,

1
n

∑n
i=1 ε̂i

∂2ε̂i
∂s∂s′

p−→ E
(
εi

∂2m(xi;s)+γ′zi
∂s∂s′

)
= E

(
E (εi|xi, zi) ∂2m(xi;s)+γ′zi

∂s∂s′

)
= 0, i.e. the second term is

negligible in the limit. The first term converges in probability to R ≡ E
(

∂m(xi;s)+γ′zi
∂s′

∂m(xi;s)+γ′zi
∂s

)
.

As argued in Lemma 4, a sufficient condition for R to be invertible is that the elements of

the ∂m(xi;s)+γ′zi
∂s′

are not linearly dependent. Linear dependence between the elements of the
∂m(xi;s)+γ′zi

∂s′
would mean that worsening of fit due to changing some of the switch point locations

could be perfectly corrected by adjusting other switch points or terms linear in zi. This cannot

be the case because different switch points affect different parts of the domain of m(x) and un-

der the assumption of no perfect multicollinearity we cannot perfectly substitute between fitting

mB(xi) and γ
′zi so adjusting γ cannot fully correct the overall fit.

It is also worth observing that the elements of the vector are non-zero: if they were, it would mean

that the choice of sj doesn’t affect the quality of the best fitted function of xi and zi explaining

yi. This would contradict the assumption that there is no intersection between the neighboring

classes Mj and no perfect multicollinearity between a function of xi and the linear term in zi.

Forcing the fitted function to follow a different property to the true function on some interval

must result in a worse fit. Some of the worsening in the fit could be accounted for by adjusting γ,

but given the assumption of no perfect multicollinearity we cannot perfectly substitute between

fitting mB(xi) and γ
′zi. This proves that R is almost surely invertible.

R is non-zero over a region in which we impose an incorrect constraint. As s approaches s0

it becomes smaller than 1
L
, yet we are still imposing the constraints based on B-splines, and

any incorrectly imposed constraint will worsen the fit over a region proportional to 1
L
, hence

R = O
(
1
L

)
.
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Finally, by applying the above results to equation (46):

|ŝ− s0| = (R + op(1))
−1Op

(
1√
n

)
hence

|ŝ− s0| = Op

(
L√
n

)
.

■

Proof of Proposition 4

This follows from the discussion in the main text, in Section 5.2.3. ■

Proof of Proposition 5

We wish to show that, after the transformation, the following term is small (i.e. op

(
1√
n

)
):

T1 =
1

n

n∑
i=1

1(xi < x) (m(xi)−mB(xi; ŝ)) .

The transformation removes the terms linear in ∂mB(xi;ŝ)
∂sk

.

By Taylor expansion, we have:

mB(xi; ŝ) = mB(xi; s
0) +

∂mB(xi; s̃)

∂s
(s0 − ŝ)

for s̃ between ŝ and s0 (element-wise). The term inside the average in T1 can be written as:

m(xi)−mB(xi; ŝ) = m(xi)−mB(xi; s
0)︸ ︷︷ ︸

=O(L−r)

+mB(xi; s
0)−mB(xi; ŝ)

= O
(
L−r

)
+
∂mB(xi; s̃)

∂s
(ŝ− s0)

= O
(
L−r

)
+
∂m̂B(xi; ŝ)

∂s
(ŝ− s0)

+

(
∂mB(xi; s̃)

∂s
− ∂mB(xi; ŝ)

∂s︸ ︷︷ ︸
=(ŝ−s̃)′

∂2mB(xi;š)

∂s∂s′ =O(∥ŝ−s0∥∞)

+
∂mB(xi; ŝ)

∂s
− ∂m̂B(xi; ŝ)

∂s︸ ︷︷ ︸
=O(L−(r−1))

)
(ŝ− s0)

= O
(
L−r + L−(r−1)

∥∥ŝ− s0
∥∥
∞ +

∥∥ŝ− s0
∥∥2
∞

)
+
∂m̂B(xi; ŝ)

∂s
(ŝ− s0)
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We have used the fact that the best B-spline approximation of kth derivative of r-times differen-

tiable function is within O
(
Lk−r

)
of the approximated function. We also rely on Taylor expansion

(of the B-spline itself, as shown above, and of its derivative), where š is another vector between

ŝ and s0 (element-wise).

The final term is linear in ∂m̂B(xi;ŝ)
∂s

and gets removed by the Khmaladze transformation.

The first part is a common upper bound over all xi: the second derivative of the B-spline with

respect to the switch points is bounded over the whole domain of xi, the bound on the fit is also

taken uniformly over the whole domain of xi. Given Proposition 3 and Condition C3:

L−r + L−(r−1)
∥∥ŝ− s0

∥∥
∞ +

∥∥ŝ− s0
∥∥2
∞ = Op

(
L−r +

1

Lr−2
√
n
+
L2

n

)
= op

(
1√
n

)

These terms are small before the transformation, and the transformation takes the form of a

projection which can only make the terms smaller. Hence, the transformed term goes to zero

faster than 1√
n
. ■

Proof of Proposition 6.

The proof follows the same steps as the proof of Theorem 1 in Komarova and Hidalgo (2023)

and is omitted. The main differences are

1. we add regressors of the form zk and ∂m̂B(xk;ŝ)
∂sl

. The first type takes non-zero values over

the whole domain, the second over ( ˆsl−1, ˆsl+1). Both of these regions remain bounded

away from zero as sample size increases (unlike the basis functions which have support

proportional to 1
L
that goes to zero, causing issues with eigenvalues of the matrix we use

in the transformation). This addition doesn’t cause any complications.

2. we use regressors based on the estimates β̂, ŝ derived from the whole sample. This is again

not an issue because they are consistent for the true values β0, s
0: we can show that the

limiting behavior is the same when we use estimates as if we use d the true values.

■

Proof of Theorem 1.
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The first statement follows straight from Proposition 4-6 and continuous mapping theorem. The

second statement follows by the same arguments as in Proposition 1 in Komarova and Hidalgo

(2023). ■

B.1 Proofs of supporting results

Lemma 1. B-splines are continuous in the switch point almost everywhere.

Proof. We want to analyse continuity of Pi in s. Each element of the vector Pi is of the form

pℓ,Lj ,[sj−1,sj ],q(xi). The value of pℓ,Lj ,[sj−1,sj ],q(x) does not depend on sk for k /∈ {j − 1, j}, hence
pℓ,Lj ,[sj−1,sj ],q(x) is continuous in sk for k /∈ {j − 1, j}.

To show continuity of pℓ,Lj ,[sj−1,sj ],q(x) in sj−1 at sj−1 = s we want to show that for almost all

x ∈ [0, 1]: lims̃−→s pℓ,Lj ,[s̃,sj ],q(x) = pℓ,Lj ,[s,sj ],q(x). We use the fact that B-splines are invariant

under a translation and scaling of the knot sequence (see the result from e.g. Lyche, Manni, and

Speleers (2017) restated in Lemma 7). pℓ,Lj ,[sj−1,sj ],q(xi) is defined on the knot sequence

t[sj−1,sj ],L
′
j ,q =

sj−1, . . . , sj−1︸ ︷︷ ︸
q+1 times

, sj−1 +
sj − sj−1

L′
j

, sj−1 + 2
sj − sj−1

L′
j

, . . . , sj, . . . , sj︸ ︷︷ ︸
q+1 times

 .

and moving from sj−1 = s̃ to sj−1 = s is equivalent to scaling by
sj−s

sj−s̃
and shifting by − (s̃−s)sj

sj−s̃
:

t[s,sj ],L
′
j ,q =

(
sj−s

sj−s̃

)
t[s̃,sj ],L

′
j ,q − (s̃−s)sj

sj−s̃
. Hence for x ∈ [0, 1] \ {s, sj}:

lim
s̃−→s

pℓ,Lj ,[s̃,sj ],q(x) = lim
s̃−→s

pℓ,Lj ,[s,sj ],q

((
sj − s

sj − s̃

)
x− (s̃− s) sj

sj − s̃

)
= pℓ,Lj ,[s,sj ],q (x)

by continuity of pℓ,Lj ,[s,sj ],q (x) in x on x ∈ [0, 1] \ {s, sj} and the fact that regardless of the

sequence of s̃ the points
(

sj−s

sj−s̃

)
x − (s̃−s)sj

sj−s̃
will eventually fall in (s, sj) if x ∈ (s, sj) or in

[0, s) ∪ (sj, 1] if x ∈ [0, s) ∪ (sj, 1] (where the B-spline is identically equal to zero).

Similarly, for continuity in sj at sj = s, we have t[sj−1,s],L
′
j ,q =

(
s−sj−1

s̃−sj−1

)
t[sj−1,s̃],L

′
j ,q − (s̃−s)sj−1

s̃−sj−1
.

Hence for x ∈ [0, 1] \ {sj−1, s}:

lim
s̃−→s

pℓ,Lj ,[sj−1,s̃],q(x) = lim
s̃−→s

pℓ,Lj ,[sj−1,s],q

((
s− sj−1

s̃− sj−1

)
x− (s̃− s) sj−1

s̃− sj−1

)
= pℓ,Lj ,[sj−1,s],q (x)
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by continuity of pℓ,Lj ,[sj−1,s],q (x) in x on x ∈ [0, 1] \ {sj−1, s} and the fact that regardless of the

sequence of s̃ the points
(

sj−s

sj−s̃

)
x − (s̃−s)sj

sj−s̃
will eventually fall in (sj−1, s) if x ∈ (sj−1, s) or in

[0, sj−1) ∪ (s, 1] if x ∈ [0, sj−1) ∪ (s, 1].

We have shown that the individual elements of Pi are continuous in s on almost all x. The only

potential points of discontinuity are x = sj, but this is not a problem given that we are interested

in β′Pi and the β coefficients are constrained to give continuity at x = sj (only the last B-spline

on [sj−1, sj] and the first on [sj, sj−1] have a discontinuity at x = sj, they both take the value of

1 at that point, and we constrain their corresponding coefficients to be equal: βLj ,j = β1,j+1).

Lemma 2. The first derivative of a B-spline basis function pℓ,Lj ,[sj−1,sj ],q(x) with respect to sk

is:

∂pℓ,Lj ,[sj−1,sj ],q(x)

∂sk
=

=
∂pℓ,Lj ,[sj−1,sj ],q(x)

∂x

((
sk−1 − x

sk − sk−1

)
1 (x ∈ [sk−1, sk)) +

(
x− sk+1

sk+1 − sk

)
1 (x ∈ [sk, sk+1))

)
(48)

= q

 pℓ,Lj ,[sj−1,sj ],q−1(x)

t
[sj−1,sj ],L′

j ,q

ℓ+q − t
[sj−1,sj ],L′

j ,q

ℓ

−
pℓ+1,Lj ,[sj−1,sj ],q−1(x)

t
[sj−1,sj ],L′

j ,q

ℓ+q+1 − t
[sj−1,sj ],L′

j ,q

ℓ+1

×

×
((

sk−1 − x

sk − sk−1

)
1 (x ∈ [sk−1, sk)) +

(
x− sk+1

sk+1 − sk

)
1 (x ∈ [sk, sk+1))

)
.

Proof. Let

t[0,1],K,q =

0, . . . , 0︸ ︷︷ ︸
q+1 times

,
1

K
,
2

K
, . . . , 1, . . . , 1︸ ︷︷ ︸

q+1 times

 (49)

be the set of knots on [0, 1] with K equally spaced intervals and endpoints repeated q+1 times.

The degree q B-splines defined on this set of knots are
{
pℓ,K+q,[0,1],q(x)

}K+q

ℓ=1
. Let us consider a

set of knots t which can be written as

t[0,1],K,q = α(s)t− β(s)

with the corresponding set of degree q B-splines {pℓ,t,q(x)}K+q
ℓ=1 . By the invariance of B-splines

to translation/scaling (see Lemma 7), for any x in the support of t:

pℓ,t,q(x) = pℓ,K,[0,1],q(α(s)x+ β(s))

where by construction α(s)x+ β(s) is in [0, 1], the support of t[0,1],K,q. Then for any sk and any
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x in the support of t:

∂pℓ,t,q(x)

∂sk
=
∂pℓ,K,[0,1],q (α(s)x+ β(s))

∂sk

=
∂pℓ,K,[0,1],q (y)

∂y

∣∣
y=α(s)x+β(s)

∂(α(s)x+ β(s))

∂sk

= q

(
pℓ,K,[0,1],q−1 (α(s)x+ β(s))

t
[0,1],K,q
ℓ+q − t

[0,1],K,q
ℓ

−
pℓ+1,K,[0,1],q−1 (α(s)x+ β(s))

t
[0,1],K,q
ℓ+q+1 − t

[0,1],K,q
ℓ+1

)(
∂α(s)

∂sk
x+

∂β(s)

∂sk

)
= q

(
pℓ,K,[0,1],q−1 (α(s)x+ β(s))

α(s)tℓ+q + β(s)− α(s)tℓ − β(s)
−

pℓ+1,K,[0,1],q−1 (α(s)x+ β(s))

α(s)tℓ+q+1 + β(s)− α(s)tℓ+1 − β(s)

)
×

×
(
∂α(s)

∂sk
x+

∂β(s)

∂sk

)
= q

(
pℓ,t,q−1 (x)

tℓ+q − tℓ
− pℓ+1,t,q−1 (x)

tℓ+q+1 − tℓ+1

)
1

α(s)

(
∂α(s)

∂sk
x+

∂β(s)

∂sk

)
=
∂pℓ,t,q(x)

∂x

1

α(s)

(
∂α(s)

∂sk
x+

∂β(s)

∂sk

)
.

For the set of knots defined on [sj−1, sj]:

t[sj−1,sj ],L
′
j ,q =

sj−1, . . . , sj−1︸ ︷︷ ︸
q+1 times

, sj−1 +
sj − sj−1

L′
j

, sj−1 + 2
sj − sj−1

L′
j

, . . . , sj, . . . , sj︸ ︷︷ ︸
q+1 times

 .

we can write

t[0,1],L
′
j ,q =

1

sj − sj−1

t[sj−1,sj ],L
′
j ,q − sj−1

sj − sj−1

,

i.e. α(s) = 1
sj−sj−1

and β(s) = − sj−1

sj−sj−1
. Then:

1

α(s)

(
∂α(s)

∂sk
x+

∂β(s)

∂sk

)
=


x−sj

sj−sj−1
if sk = sj−1

sj−1−x

sj−sj−1
if sk = sj

0 if sk /∈ {sj−1, sj}.

Since for x ∈ [sk−1, sk] only the pℓ,Lj ,[sk−1,sk],q(x) take non-zero values, for x ∈ [0, 1] \
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{s1, s2, . . . , sJ}:

∂pℓ,Lj ,[sj−1,sj ],q(x)

∂sk

=
∂pℓ,Lj ,[sj−1,sj ],q(x)

∂x

((
sk−1 − x

sk − sk−1

)
1 (x ∈ [sk−1, sk)) +

(
x− sk+1

sk+1 − sk

)
1 (x ∈ [sk, sk+1))

)
.

Note that
(

sk−1−x

sk−sk−1

)
1 (x ∈ [sk−1, sk))+

(
x−sk+1

sk+1−sk

)
1 (x ∈ [sk, sk+1)) is continuous for all x ∈ [0, 1],

but due to potential discontinuity in
∂pℓ,Lj,[sj−1,sj ],q

(x)

∂x
at the switch points we need to rule out

x ∈ {s1, s2, . . . , sJ}.

While the derivatives of specific B-spline basis functions may be discontinuous at switch points,

this is not a problem in our setting because of the continuity and smoothness constraints

which ensure that the derivative with respect to x of the constrained B-spline mB(x; s) ≡∑J
j=1

∑Lj

ℓ=1 βℓ,jpℓ,Lj ,[sj−1,sj ],qj (x) at x = sk is well-defined and continuous.

Lemma 3. Q̂(θ) is continuously differentiable.

Proof. The derivatives with respect to βℓ and γk are clearly continuous:

∂Q̂(θ)

∂βℓ,j
=

1

n

n∑
i=1

−2 (yi −mB(xi)− γ′zi) pℓ,Lj ,[sj−1,sj ],qj(xi)

∂Q̂(θ)

∂γk
=

1

n

n∑
i=1

−2 (yi −mB(xi)− γ′zi) zik

as the first bracket is continuous in β, s (see Lemma 1) and γ, and pℓ,Lj ,[sj−1,sj ],qj(xi) and zik are

constant. The derivative with respect to s is a bit more involved, but using Lemma 2 we can
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show that it is:

∂Q̂(θ)

∂sk
=

1

n

n∑
i=1

−2 (yi −mB(xi)− γ′zi)
∂mB(xi)

∂sk

=
1

n

n∑
i=1

−2 (yi −mB(xi)− γ′zi)

 J∑
j=1

Lj∑
ℓ=1

βℓ,j
∂pℓ,Lj ,[sj−1,sj ],qj(xi)

∂sk


=

1

n

n∑
i=1

−2 (yi −mB(xi)− γ′zi)

(
J∑

j=1

Lj∑
ℓ=1

βℓ,j
∂pℓ,Lj ,[sj−1,sj ],qj(xi)

∂x
×

×
((

sk−1 − x

sk − sk−1

)
1 (x ∈ [sk−1, sk)) +

(
x− sk+1

sk+1 − sk

)
1 (x ∈ [sk, sk+1))

)
︸ ︷︷ ︸

≡Ask
(xi)

)

=
1

n

n∑
i=1

−2 (yi −mB(xi)− γ′zi)
J∑

j=1

Lj∑
ℓ=1

βℓ,j
∂pℓ,Lj ,[sj−1,sj ],qj(xi)

∂x
Ask(xi)

=
1

n

n∑
i=1

−2 (yi −mB(xi)− γ′zi)
∂mB(xi)

∂x
Ask(xi).

mB is continuously differentiable in x (by properties of spline functions and by the assumption

of smoothness at the minimum), hence ∂mB(xi)
∂x

is well-defined for all xi, and Ask(xi) is continuous

in both s and x ∈ [0, 1]. Hence the derivatives with respect to all inputs are continuous.

Lemma 4. Let x be a k-dimensional vector of random variables. The matrix E (xx′) is invertible

if and only if the elements of x are not linearly dependent, i.e. there does not exist a constant

vector v ∈ Rk \ {0} such that x′v = 0 a.s..

Proof. For necessity, suppose ∃v ∈ Rk such that v ̸= 0 and x′v = 0 a.s.. Then with probability

one

0 = E (xx′v) = E (xx′) v

for v ̸= 0, i.e. rank (E (xx′)) < k and E (xx′) is not invertible.

For sufficiency, suppose E (xx′) is not invertible. Then there must exist a constant vector v ∈
Rk \ {0} such that E (xx′) v = 0. Then we also have

0 = v′0 = v′E (xx′) v = E (v′xx′v) = E
(
(v′x)

2
)
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which implies that v′x = 0 a.s..

Lemma 5. 1
n

∑n
i=1 m̂B(xi; s

0)−m(xi) = Op

(
1√
n

)
.

Proof. This is stated for the case without additional covariates and when we use the true switch

point s0. The argument is identical if we look at the version where instead of m̂B(xi; s
0) we use

m̂B(xi; s
0) + γ̂′zi and instead of m(xi) we use m(xi) + γ′zi.

Let P denote the matrix of effective B-splines (i.e. after imposing all binding constraints) based

on switch points s0 and evaluated at all points {xi}ni=1. Let m, mB (s0) and m̂B (s0) denote the

vectors of the three functions evaluated at all points {xi}ni=1, and let β̂ and β0 be vectors of

coefficients such that m̂B (s0) = Pβ̂ and mB (s0) = Pβ0.

The term of interest is:

1

n

n∑
i=1

m̂B(xi; s
0)−m(xi) =

1

n
ι′(m̂B −m)

where ι is a vector of n 1s.

We use the property16 that for a scalar random variable Xn:

Xn − E(Xn) = Op

(√
V (Xn)

)
.

For Xn = 1
n

∑n
i=1 m̂B(xi; s

0) −m(xi) we start by looking at the expectation. We firstly find an

expression for m̂B (s0)−mB (s0):

m̂B

(
s0
)
= Pβ̂ = P (P ′P )+P ′(m+ u)

= P (P ′P )+P ′(Pβ0 +m− Pβ0 + u)

= Pβ0 + P (P ′P )+P ′(m− Pβ0 + u)

= mB

(
s0
)
+ P (P ′P )+P ′(m−mB

(
s0
)
+ u).

Each element of the m−mB (s0) vector is bounded above by ∥m(xi)−mB(xi; s
0)∥∞ = O (L−r),

16. This follows from Markov’s inequality: ∀ε > 0 there exists C = C(ε) > 0 such that

P
(
|Xn| > C

√
E (X2

n)
)
≤

E
(
X2

n

)
C2E (X2

n)
= C−2 < ε.
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hence we have:

1

n
ι′(mB

(
s0
)
−m) =

1

n

n∑
i=1

mB(xi; s
0)−m(xi)

≤ 1

n

n∑
i=1

∥m(xi)−mB(xi; s
0)∥∞

= ∥m(xi)−mB(xi; s
0)∥∞ = O

(
L−r

)
.

We can find an upper bound on the length of the vector m−mB (s0) as:

∥m−mB

(
s0
)
∥ =

√√√√ n∑
i=1

(m(xi)−mB(xi; s0))2

≤
√
n∥m(xi)−mB(xi; s0)∥2∞

=
√
n∥m(xi)−mB(xi; s

0)∥∞

It follows that:

1

n
ι′P (P ′P )−1P ′(m−mB

(
s0
)
) ≤ 1

n
∥ι∥∥P (P ′P )−1P ′(m−mB

(
s0
)
)∥

≤ 1

n

√
n∥m−mB

(
s0
)
∥

≤ 1

n

√
n
√
n∥m(xi)−mB(xi; s

0)∥∞

= ∥m(xi)−mB(xi; s
0)∥∞ = O

(
L−r

)
.

The first inequality is by the Cauchy-Schwarz inequality and the second comes from the fact

that projecting a matrix can only make it shorter.
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Combining all of these facts, we have:

E

(
1

n
ι′(m̂B

(
s0
)
−m)

∣∣∣∣X) =
1

n
ι′E(m̂B

(
s0
)
−mB

(
s0
)
|X) +

1

n
ι′
(
mB

(
s0
)
−m

)
︸ ︷︷ ︸

=O(L−r)

=
1

n
ι′P (P ′P )−1P ′(m−mB

(
s0
)
+

1

n
ι′E(u|X)︸ ︷︷ ︸

=0

) +O
(
L−r

)
=

1

n
ι′P (P ′P )−1P ′(m−mB

(
s0
)
)︸ ︷︷ ︸

=O(L−r)

+O
(
L−r

)
= O

(
L−r

)
.

Note that the bound of 2∥m(xi)−mB(xi; s
0)∥∞ does not depend on X, it is the same for all X,

hence by the law of iterated expectations we also have:

E

(
1

n
ι′(mB

(
s0
)
−m)

)
= E

(
E

(
1

n
ι′(mB

(
s0
)
−m)

∣∣∣∣X)) = O
(
L−r

)
.

For variance:

V

(
1

n
ι′(m̂B

(
s0
)
−m)

∣∣∣∣X) =
1

n2
ι′V
(
P (P ′P )−1P ′(m−mB

(
s0
)
+ u) +mB

(
s0
)
−m

∣∣X) ι
=

1

n2
ι′P (P ′P )−1P ′V (u|X)P (P ′P )−1P ′ι

=
1

n2
ι′P (P ′P )−1P ′σ2IP (P ′P )−1P ′ι

=
σ2

n2
ι′P (P ′P )−1P ′P (P ′P )−1P ′ι︸ ︷︷ ︸

=∥P (P ′P )−1P ′ι∥2≤∥ι∥2=n

≤ σ2

n
.

For the second equality we use the fact that mB (s0), m and P are deterministic functions of X.

The final inequality comes from the fact that P (P ′P )−1P ′ is a projection matrix, and projecting

a vector can only make it shorter17. This is again a common bound for any choice of X.

17. In fact, B-splines sum to 1, so the vector if 1s is in the span of P and the projection should leave ι unchanged.
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By the law of total variance:

V

(
1

n
ι′(m̂B

(
s0
)
−m)

)
= E

(
V

(
1

n
ι′(m̂B

(
s0
)
−m)

∣∣∣∣X))+ V

(
E

(
1

n
ι′(m̂B

(
s0
)
−m)

∣∣∣∣X))
= E

(
σ2

n

)
+ V

(
O
(
L−r

))
= O

(
1

n
+ L−2r

)
.

Finally, using L−r ≺ 1√
n
:

1

n

n∑
i=1

m̂B(xi; s
0)−m(xi) = Op

(
1√
n
+ L−r

)
= Op

(
1√
n

)
.

Lemma 6.

1

n

n∑
i=1

1(xi < x) (m(xi)−mB(xi; ŝ)) = Op

(
1√
n

)
.

Proof. Let f(xi, s) = m(xi)−mB(xi, s) where mB(xi, s) is the best possible B-spline approxima-

tion to m(xi) which satisfies the constraints under HB
0 . f(xi, s) is of order O (L−r) if s = s0 or

xi is sufficiently far from a misspecified switch point. If s ̸= s0 and xi is within a neighborhood

of the misspecified switch point, the f(xi, s) is separated away from zero and does not go to zero

as n −→ ∞, at least for xi between the true switch point and the switch point used to impose

constraints18.

In the proof of Proposition 3 we rely on the Taylor-expansion of the objective function around

the true switch point:

∥ŝ− s0∥ =

(
∂2Q̂(s0)

∂s∂s′
+ op(1)

)−1
∂Q̂(s0)

∂s′

=

(
∂2Q̂(s0)

∂s∂s′

)−1

Op

(
1√
n

)
.

18. e.g. when we use an incorrect switch point and impose a constraint of increasing function when the true one
is decreasing, the best we can do is choose a constant function at some level between m(s) and m(s0).
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It can be shown that

∂2Q̂(s0)

∂s∂s′
≃ 1

n

n∑
i=1

∂f(xi, s
0)

∂s

∂f(xi, s
0)

∂s′
≃
∫
∂f(x, s0)

∂s

∂f(x, s0)

∂s′
dx ∼ max

k

∫ (
∂f(x, s0)

∂sk

)2

dx.

At the same time, the term of interest is:

1

n

n∑
i=1

1(xi < x)f(xi, ŝ) ≃
∫ x

0

f(xi, ŝ)dx

≃
∫ x

0

f(xi, s
0)︸ ︷︷ ︸

∼L−r

+
∂f(xi, ŝ)

∂s
(ŝ− s0)dx

≃ Op

(
L−r

)
+

∫ x

0

∂f(xi, ŝ)

∂s
dx

Op

(
1√
n

)
maxk

∫ (∂f(x,s0)
∂sk

)2
dx

= Op

(
1√
n

)
.

The last equality is because
∫ (∂f(x,s0)

∂sk

)2
dx and

∫ ∂f(x,s0)
∂sk

dx are proportional to each other (both

are O(1) over the same region). And the whole term is close to 0 is x is below the misspecified

switch point.

B.2 Useful results

Lemma 7 (B-splines are invariant under a translation and/or scaling of the knot sequence (see

e.g. Lyche, Manni, and Speleers (2017)).). Let pℓ,t,q(x) be the lth B-spline function of order q

based on the knot vector t evaluated at x, and let α, β ∈ R with α ̸= 0. Then

pℓ,αt+β,q(αx+ β) = pℓ,t,q(x). (50)

Lemma NP.A1. (Newey and Powell 2003) based on Gallant (1987): Consistency of an ex-

tremum estimator. Let

θ̂n = argmin
θ∈Θ̂

Q̂(θ)

be an extremum estimator based on a sample of size n and assume that there exists a function

Q(θ) and a set Θ such that:

(i) Q(θ) has a unique minimum on Θ at θ0;
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(ii) Q̂(θ) and Q(θ) are continuous, Θ is compact, and maxθ∈Θ

∣∣∣Q̂(θ)−Q(θ)
∣∣∣ p−→ 0;

(iii) Θ̂ are compact subsets of Θ such that for any θ ∈ Θ there exists θ̂ ∈ Θ̂ such that θ̂
p−→ θ.

Then

θ̂n
p−→ θ0.

Lemma NP.A2. (Newey and Powell 2003): Uniform convergence. If

(i) Θ is a compact subset of a space with norm ∥θ∥;

(ii) Q̂(θ)
p−→ Q(θ) for all θ ∈ Θ;

(iii) there is a δ > 0 and Bn = Op(1) such that for all θ, θ̃ ∈ Θ, |Q̂(θ)− Q̂(θ̃)| ≤ Bn∥θ − θ̃∥δ,

then Q(θ) is continuous and

sup
θ∈Θ

|Q̂(θ)−Q(θ)| p−→ 0. (51)
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